簡易檢索 / 詳目顯示

研究生: 陳韻如
Chen, Yun-Zu
論文名稱: 探究臺灣五至八年級學生積木方塊三視圖的表現:問卷調查與教學實驗
Exploring Taiwan Fifth to Eighth Graders’ performance on Orthogonal Views of Cubes: A Questionnaire Survey and Teaching Experiments
指導教授: 林福來
Lin, Fou-Lai
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 156
中文關鍵詞: 方塊假設性學習路徑問卷三視圖空間推理
英文關鍵詞: Cubes, hypothetical learning trajectory (HLT), questionnaire, orthogonal views, spatial reasoning
DOI URL: https://doi.org/10.6345/NTNU202202493
論文種類: 學術論文
相關次數: 點閱:158下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在建立三視圖的假設性學習路徑,研究分三個階段進行。第一階段,藉由訪談,了解學生對於三視圖的自發性解題策略。第二階段,發展問卷,以調查五至八年級學生的積木方塊三視圖的表現。第三階段,形成三視圖的假設性學習路徑,並以教學實驗檢驗其有效性。
    分述各階段的研究方法如下。第一階段的研究,是以半結構性訪談的方式進行,訪談對象是六位十年級學生,問題的變項包含:積木數量與可否懸空。第二階段的研究,是以問卷調查的方式進行,受測對象為551位五至八年級學生。共發展三項三視圖相關任務:「由視圖選立體圖」、「由底層和視圖計數」和「由視圖選出相容視圖」。其中,按給定的視圖資訊,「由視圖選出相容視圖」又分為三種題型:右俯、前俯,和前右。本研究探討了年級、操作物的有無、任務類型對學生表現的影響。第三階段的研究,是以單一組前後測的教學實驗方式進行,教學實驗的對象包含一個五年級、一個六年級,與一個十年級的班級。
    研究結果發現,學生對於積木方塊三視圖的解題策略包含:視覺與局部推理,而使用的表徵包含:語言、圖像、模擬與心像。當積木數量由二立方增至三立方時,需積木模擬才能解題的學生增加,當積木由不懸空發展成可懸空時,局部推理的學生減少。可見二立方不懸空的情境下,學生可發展較多不同的解題方式。
    三視圖問卷的發展,即鎖定二立方不懸空的情境,調查結果發現,年級和任務、積木和任務之間有交互作用。對於「由視圖選出相容視圖(前右)」任務,國小和國中學生表現有顯著差異。而提供操作物,對「由視圖選立體圖」表現沒有顯著影響。就主效果而言,有操作物時學生表現較無操作物時好。較高年級學生表現顯著優於較低年級學生。「由視圖選立體圖」和「由底層和視圖計數」表現顯著優於「由視圖選出相容視圖(右俯)」和「由視圖選出相容視圖(前俯)」,又顯著優於「由視圖選出相容視圖(前右)」(p<.01)。
    三視圖的假設性學習路徑,包含:編碼、解碼,和空間推理三階段。編碼階段主要訓練學生以積木方塊的各種表徵(示意圖、三視圖、分層圖)進行溝通;解碼階段,是由視圖建造出相符的積木模型;空間推理階段,學生需在無積木的情境下論述積木方塊的組態。根據該假設性學習路徑,發展教學活動並進行單一組前後測,其結果為:五、六年級學生在「由底層和視圖計數」表現有顯著進步。十年級學生在「由視圖選出相容視圖」表現有顯著進步。
    綜而言之,本研究可貢獻在三視圖學習與教學的三個面向:描述學生的解碼策略、區別學生的三視圖表現層次,並形成積木方塊三視圖的假設性學習路徑。
    關鍵詞:方塊、假設性學習路徑、問卷、三視圖、空間推理

    The study aimed to explore Taiwan fifth to eighth graders’ performance on orthogonal views of cubes in three phases:The spontaneous concepts, the accuracy with regard to different kinds of tasks, and the teaching effects.
    The first phase, a survey was conducted on spontaneous concepts and decoding strategies among six 10th graders. The survey was based on a semi-structured interview with three tasks varied in numbers of the cube, and cube situation (with floating cubes or not). The second phase, a questionnaire was developed which included three tasks:Choosing isometric, cube enumeration, and the compatible task. The sample included 551 5th -8th graders. The study aimed to investigate the effects of three variables:(concrete manipulatives, grades, and tasks) on students’ performance. The third phase, teaching experiments were conducted in a 5th, a 6th, and a 10th-grade class by pretest-posttest designs.
    The results were as follows. Spontaneous concepts of orthogonal views included seeing one view as one layer. Decoding strategies(visual/analytic) and modes of representation(discursive/visualization/simulation/mental image) all influenced students’ decoding performance.
    The effect of concrete manipulatives, grades, and tasks were as follows. There was an interaction between grades and tasks; and also between concrete material and tasks. As main effects, the elder outperformed the younger for each age group. The groups with manipulation outperformed the group without. And as for item difficulty, choosing isometric and cube enumeration were significantly easier than the compatible task(p<.01).
    The hypothetical learning trajectory (HLT) for orthogonal views of cube follows the teaching sequence:Coding, decoding, and reasoning. One teaching experiment conducted in a 5th and a 6th-grade class resulted in a significant improvement in cube enumeration. Another teaching experiment conducted in a 10th-grade class resulted in a significant improvement in the compatible task.
    In conclusion, the study contributed the teaching and learning of orthogonal views of cubes in 3 faces:describing students’decoding strategies, distinguishing students’performance in different levels, and formulating HLT for orthogonal views of cubes.
    Keywords: Cubes, hypothetical learning trajectory (HLT), questionnaire, orthogonal views, spatial reasoning

    第壹章、緒論 ………………………………………………………… 1 第一節、研究背景與動機 ………………………………………… 1 第二節、研究理念 ……………………………………………… 7 第三節、研究目的與待答問題……………………………………… 9 第四節、名詞解釋 ……………………………………………… 10 第貳章、理論背景 ……………………………………………………… 15 第一節、幾何物件的認知歷程 …………………………………… 15 第二節、三視圖與空間推理………………………………………… 18 第三節、積木方塊三視圖的任務與表現 ……………………… 22 第四節、假設性學習路徑 ……………………………………… 28 第叁章、積木方塊三視圖的解題策略 ……………………………… 35 第一節、理論背景 ……………………………………………… 35 第二節、研究方法和樣本 ……………………………………… 40 第三節、資料分析 …………………………………………………… 41 第四節、結果與討論………………………………………………… … 43 第肆章、積木方塊三視圖的評量 ……………………………………… 47 第一節、理論背景…………………………………………………… 47 第二節、前置研究 ……………………………………………… 49 第三節、研究工具 ……………………………………………… 50 第四節、研究方法和樣本 ……………………………………… 53 第五節、資料分析 …………………………………………………… 55 第六節、問卷的信效度……………………………………………… 55 第七節、三視圖的表現評估………………………………………… … 57 第伍章、三視圖的假設性學習路徑 ………………………………… 71 第一節、理論背景 ……………………………………………… 71 第二節、研究方法和樣本 ……………………………………… 74 第三節、資料分析 …………………………………………………… 74 第四節、結果與討論………………………………………………… 74 第陸章、結論與建議 ………………………………………………… 93 第一節、結論 ……………………………………………………… 93 第二節、建議 ……………………………………………………… 100 參考文獻 ……………………………………………………………… 105 附錄一、數學課程中空間內容的比較…………………………………… 113 附錄二. 前置研究的三視圖能力問卷(二立方)……………………… 117 附錄三. 前置研究的三視圖能力問卷(三立方)……………………… 129 附錄四、正式研究中的三視圖問卷……………………………………… 141 附錄五、三視圖的實徵研究……………………………………………… 157

    中文部分
    林福來(1987)。國中生反射、旋轉、平移概念發展研究。國科會專題研究計畫報告NSC75-0111-S003-01,NSC76-0111-S003-12。
    林慧美(2011)。國小六年級學童在空間定位能力上表現之探究─以立體三視圖為例。國立臺北教育大學數學暨資訊教育學系學位論文,未出版,台北市。
    林玉珠(2009)。國小空間能力優異學生空間方位之解題歷程。國立台北教育大學數學教育研究所碩士學位論文,未出版,台北市。
    康鳳梅、鍾瑞國(2000)。師範院校機械相關系學生工程圖學空間能力之研究。師大學報: 科學教育類, 45卷1期, 59-71。
    教育部. (2003). 國民中小學九年一貫課程綱要數學學習領域。台北: 教育部。
    邱皓政(2015)。量化研究與統計分析:SPSS (PASW)資料分析範例。五南出版社。
    張碧芝、吳昭容(2009) 。影響六年級學生立方體計數表現的因素-空間定位與視覺化的角色。教育心理學報,41卷1期, 125-145。
    中華人民共和國教育部(2011)。義務教育數學課程標準。北京師範大學出版社。
    陳冠州(2008)。真實情境下國小二年級兒童空間定位概念之個案研究。科學教育學刊,16(3),281-301。
    陳淑敏(2011)。幼稚園大班兒童空間表徵之探究。教育心理學報,43卷1期, 77-96。
    左台益、梁勇能(2001)。國二學生空間能力與van Hielie幾何思考層次相關性研究。師大學報:科學教育類,46卷1 & 2期,1-20。
    歐陽弘、廖美雯(2010)。製圖實習。弘陽圖書有限公司。

    日文部分
    文部科學省(2008).小学校学習指導要領解説算数編. Japan: Ministry of Education, Culture, Sports, Science, and Technology.
    文部科學省(2008).中学校学習指導要領解説算数編. Japan: Ministry of Education, Culture, Sports, Science, and Technology.

    西文部分
    Acock, A. C. (2008). A Gentle Introduction to Stata, Second Edition. Stata Press: Texas.
    Battista, M. T. & Clements, D. H. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 258-292.
    Battista, M. T. (2007). The development of geometric and spatial thinking. In: F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908).Charlotte, NC: NCTM/Information Age Publishing.
    Ben-Chaim, D., Lappan, G., & Houang, R. T. (1988). The effect of instruction on spatial visualization skills of middle school boys and girls. American Educational Research Journal, 25(1), 51-71.
    Ben-Chaim, D., Glenda L., and Richard T. H. (1989). Adolescents' ability to communicate spatial information: Analyzing and effecting students' performance. Educational Studies in Mathematics, 121-146.
    Biggs, J. B., & Collis, K. F. (1982). Evaluation the quality of learning: the SOLO taxonomy (structure of the observed learning outcome). Academic Press.
    Bishop, A. J. (1980). Spatial abilities and mathematics education ― a review. Educational Studies of Mathematics. 11, 257-269.
    Bishop, A. J. (1983). Spatial abilities and mathematical thinking. In Proceedings of the Fourth International Congress on Mathematical Education (pp. 176-178).
    Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: principles, policy & practice, 5(1), 7-74.
    Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability (formerly: Journal of Personnel Evaluation in Education), 21(1), 5.
    Boonen, A. J., van Wesel, F., Jolles, J., & van der Schoot, M. (2014). The role of visual representation type, spatial ability, and reading comprehension in word problem solving: An item-level analysis in elementary school children. International Journal of Educational Research, 68, 15-26.
    Bruner, J. S. (1973). Beyond the information given: Studies in the psychology of knowing. WW Norton.
    Bryant, D. J., Tversky, B., & Franklin, N. (1992). Internal and external spatial frameworks for representing described scenes. Journal of Memory and language, 31(1), 74-98.
    Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
    Chick, H. L., Watson, J. M., & Collis, K. F. (1988). Using the SOLO taxonomy for error analysis in mathematics. Research in Mathematics Education in Australia, 34-47.
    Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Eds.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 420-464). Macmillan Publishing Co, Inc.
    Clements, D. H. & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical thinking and learning, 6(2), 81-89.
    Clements, D. H., Wilson, D. C., & Sarama, J. (2004). Young children's composition of geometric figures: A learning trajectory. Mathematical Thinking and Learning, 6(2), 163-184.
    Clements, D. H., & Sarama, J. (2014). Learning and teaching early math: The learning trajectories approach. Routledge.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Eribaum.
    Cohen, N. (2003). Curved Solids Nets. In N. Pateman, B. J. Dougherty, & J. Zillox. (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education. 2, 229-236.
    Cohen, C. A. & Hegarty, M. (2007). Sources of difficulty in imagining cross sections of 3D objects. In Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (pp. 179-184). Cognitive Science Society Austin TX.
    Cohen, C. A., & Hegarty, M. (2014). Visualizing cross sections: Training spatial thinking using interactive animations and virtual objects. Learning and Individual Differences, 33, 63-71.
    Collis, K. F., Romberg, T. A., & Jurdak, M. E. (1986). A technique for assessing mathematical problem-solving ability. Journal for Research in Mathematics Education, 206-221.
    Cooper, M. & Sweller, J. (1989). Secondary school students' representations of solids. Journal for Research in Mathematics Education, 202-212.
    Cooper, L. A. (1990). Mental representation of three-dimensional objects in visual problem solving and recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(6), 1097.
    Davis, B. (2015). Spatial reasoning in the early years: Principles, assertions, and speculations. Routledge.
    Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In Exploiting mental imagery with computers in mathematics education (pp. 142-157). Springer Berlin Heidelberg.
    Duval, R. (1998). Geometry from a cognitive point of view. NEW ICMI STUDIES SERIES, 5, 37-51.
    Duval, R. (2000). Basic Issues for Research in Mathematics Education. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education. 1, 55-69.
    Ebel, R. I. & Frisbie, D. A. (1991). Essentials of educational measures. Englewood Cliffs, NJ: Prentice-Hall. Lubinescu, ES, Ratcliff, JL, & Gaffney, MA,(2001). Two continuums collide: Accreditation and Assessment, New Directions for Higher Education, 113, 5-21.
    Ekstrom, R. B., French, J. W., & Harman, H. H. (1979). Cognitive factors: Their identification and replication. Multivariate Behavioral Research Monographs.
    Eliot, J. (1987). Models of psychological space. New York: Spriger-Verlag.
    Fennema, E., & Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 16(3), 184-206.
    Geographical Sciences Committee (2006). Learning to think spatially: GIS as a Support System in the K-12 Curriculum. Washington, D.C., The National Academies Press.
    George, D. & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4th ed.). Boston: Allyn & Bacon.
    Girden, E. R. (1992). ANOVA: Repeated measures (No. 84). Sage.
    Gravemeijer, K. & Stephan, M. (2002). Emergent models as an instructional design heuristic. In Symbolizing, modeling and tool use in mathematics education (pp. 145-169). Springer Netherlands.
    Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical thinking and learning, 6(2), 105-128.
    Gutierrez, A. (1996). Children’s ability for using different plane representations of space figures. New directions in geometry education (Centre for Math. and Sc. Education, QUT: Brisbane, Australia), 33-42.
    Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447.
    Hegarty, M. & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175-191.
    Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. The Cambridge handbook of visuospatial thinking, 121-169.
    Hershkowitz, R., Parzysz, B., & Van Dormolen, J. (1996). Space and shape. In Bishop, A. J., Clements, K., Keitel, C., Kilpatrick, J., & Laborde, C. (Eds.), International Handbook of Mathematics Education (pp. 161-204). Dordrecht: Kluwer Academic Publishers.
    Huang, S. T. & Shyi, C. W. (1998). A Comparison of 3-D Mental Models in Solving Visuospatial Problems between Gifted and Nongifted High School Students. PROCEEDINGS-NATIONAL SCIENCE COUNCIL REPUBLIC OF CHINA PART D MATHEMATICS SCIENCE AND TECHNOLOGY EDUCATION, 8, 1-15.
    Jones, K., Fujita, T., & Kunimune, S. (2012). Representations and reasoning in 3-D geometry in lower secondary school. Proceedings of PME-36, 2, 339-346.
    Kelly, G., Ewers, T., & Proctor, L. (2002). Developing spatial sense: comparing appearance with reality. The Mathematics Teacher, 95(9), 702-712.
    Kosslyn, S. M. (1980). Image and mind. Harvard University Press.
    Krutet︠s︡kiĭ, V. A., WIRSZUP, I., & Kilpatrick, J. (1976). The psychology of mathematical abilities in schoolchildren. University of Chicago Press.
    Leiva, M. A., Ferrini-Mundy, J., & Johnson, L. P. (1992). Playing with Blocks: Visualizing Functions. The Mathematics Teacher, 85(8), 641-654.
    Lohman, D. (1988). Spatial abilities as traits, processes and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence, vol. 40 (pp. 181-248). Hillsdale: LEA.
    Luneta, K. (2015). Understanding students' misconceptions: an analysis of final Grade 12 examination questions in geometry: original research. Pythagoras, 36(1), 1-11.
    McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological bulletin, 86(5), 889.
    Merriam-Webster (1984). Merriam-Webster's Dictionary of Synonyms: A Dictionary of Discriminated Synonyms with Antonyms and Analogous and Contrasted Words. Merriam-Webster, Inc.
    Mitchelmore, M. C.(1978). Developmental stages in children's representation of regular solid figures. The Journal of Genetic Psychology, 133(2), 229-239.
    Mitchelmore, M. C. (1980). Prediction of developmental stages in the representation of regular space figures. Journal for Research in Mathematics Education, 83-93.
    Moor, E. D. (1991). Geometry-instruction (age 4-14) in the Netherlands-the realistic approach. Realistic Mathematics Education in Primary School, Freudenthal Institute, Utrecht, 119-139.
    Moore-Russo, D., Viglietti, J. M., Chiu, M. M., & Bateman, S. M. (2013). Teachers' spatial literacy as visualization, reasoning, and communication. Teaching and Teacher Education, 29, 97-109.
    Newcombe, N., & Huttenlocher, J. (1992). Children's early ability to solve perspective-taking problems. Developmental psychology, 28(4), 635.
    Newcombe, N. S. & Huttenlocher, J. (2003). Making space: The development of spatial representation and reasoning. MIT Press.
    Newcombe, N. S. & Shipley, T. F. (2012). Thinking about Spatial Thinking: New Typology, New Assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity. New York: Springer.
    Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, 3(1), 1-10.
    Özgen, C. (2012). Stragies and Difficulties in Solving Spatial Visualization Problems: A Case Study With Adults (Doctoral dissertation, Middle East Technical University).
    Parzysz, B. (1988). “Knowing” vs “seeing”. Problems of the plane representation of space geometry figures. Educational studies in mathematics, 19(1), 79-92.
    Parzysz, B. (1991). Representation of space and students' conceptions at high school level. Educational Studies in Mathematics, 22(6), 575-593.
    Piaget, J. & B. Inhelder (1967). A Child's Conception of Space (F. J. Langdon & J. L. Lunzer, Trans.). New York: Norton (Original work published 1948)
    Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75, 191-212.
    Ragni, M., & Knauff, M. (2013). A theory and a computational model of spatial reasoning with preferred mental models. Psychological review, 120(3), 561.
    Sack, J. J.(2013). Development of a top-view numeric coding teaching-learning trajectory within an elementary grades 3-D visualization design research project. The Journal of Mathematical Behavior, 32(2), 183-196.
    Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703.
    Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for research in mathematics education, 114-145.
    Shyi, G. C. W. & Huang, S. T. T. (1995). Constructing Three-Dimensional Mental Models From Viewing Two-Dimensional Displays. Chinese Journal of Psychology, 37(2), 101-122.
    Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21(3), 216-229.
    Tversky, B. (2005). Visualspatial reasoning. In K. Holyoak and R. Morrison, editors, The Cambridge Handbook of Thinking and Reasoning, pp. 209–240. Cambridge, U.K.: Cambridge University Press.
    Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies.
    van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Pr.
    Vergnaud, G. (1983). Multiplicative structures. In Lesh, R. & Landau, M. (Eds.)Acquisition of Mathematics Concepts and Structures. Academic Press, New York, pp. 127-174
    Vergnaud, G. (1988). Multiplicative structures. Number concepts and operations in the middle grades, 2.
    Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
    Western and Northern Canadian Protocol [WNCP] (2006). Common curriculum framework for mathematics. Edmonton, AB: Alberta Education. Retrieved 20 April 2010 from http:// www.wncp.ca/
    Wu, H. K., Lin, Y. F., & Hsu, Y. S. (2013). Effects of representation sequences and spatial ability on students’ scientific understandings about the mechanism of breathing. Instructional Science, 41(3), 555-573.
    Yore, L. D., Pimm, D., & Tuan, H. L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5(4), 5

    下載圖示
    QR CODE