研究生: |
劉晉宇 Liu, Chin-Yu |
---|---|
論文名稱: |
廣視野高解析度數位全像術及其最佳化系統設計之研究 A Study on High Resolution Wide-field Digital Holographic Microscopy and Optimized System Design |
指導教授: |
鄭超仁
Cheng, Chau-Jern |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 廣視野 、視野範圍 、像點解析度 、橫向解析度 、升採樣 、參考球面波 、合成孔徑 |
英文關鍵詞: | wide-field, field of view, pixel resolution, lateral resolution, up-sampling, point source reference wave, synthetic aperture |
DOI URL: | https://doi.org/10.6345/NTNU202204129 |
論文種類: | 學術論文 |
相關次數: | 點閱:208 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討廣視野的數位全像術系統所會面臨的問題與其解決方法,以達到廣視野高解析度數位全像術系統為目的。一般在廣視野的系統下,其視野範圍主要受限於光感測元件,因此本論文將使用放大倍率小於1的4f系統,來達到突破光感測元件視野範圍之限制,但記錄的光場被縮束之後會遇到像點解析度與橫向解析度不足的問題,因此以紀錄菲涅耳全像片結合升採樣技術,增加其重建平面的畫素數量,提升像點解析度。接著再使用參考球面波紀錄全像片,在重建平面上提供一項額外的放大倍率,並結合合成孔徑拓寬全像片頻譜平面的頻譜涵蓋範圍來增加橫向解析度。而提升像點解析度與橫向解析度後,可以使原本只能解析 線寬提升至 。另外橫向解析度的高低也會與視野範圍的大小有關,因此本研究會探討其最佳化數值使系統元件的效益可以被最大化,以增加未來用於應用層面的潛力。
We propose a wide-field digital holographic microscopy system to enhance the field of view. In wide-field system, the field of view is limited in image sensor. So we use telescope to enhance the field of view. To resolve the low pixel resolution, we use up-sampling method in Fresnel transform to enhance the pixel resolution in reconstruction plane. Then, to enhance the lateral resolution, we use spherical reference wave to product the additional magnification in reconstruction plane. And using synthetic aperture to enhance the frequency coverage in frequency plane of the hologram. After enhancing the pixel resolution and lateral resolution, we can get the lateral resolution from becomes . And the lateral resolution is inversely proportional to the field of view, so we would find the optimum value to maximum the effect of the system, which has more potential in application in the future.
[1] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
[2] Emmett N. Leith and Juris Upatnieks, “Reconstructed Wavefronts and Communication Theory*,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
[3] D. Gabor, “Holographic Model of Temporal Recall,” Nature London 217, 584 (1968).
[4] U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[5] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270, (1997).
[6] I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975-983 (2006).
[7] C. J. Mann and M. K. Kim, “Quantitative phase-contrast microscopy by angular spectrum digital holography,” Proc. SPIE 6090, 60900B-1-60900B-8 (2006).
[8] U. Schnars and W. P. O. Jüptner, Digital Holography, Springer US, New York, 5-69 (2005).
[9] Tong Zhang and Ichirou Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
[10] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[11] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[12] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[13] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2, 2721-2730 (2011).
[14] S. N. A. Morel, A. Delon, P. Blandin, T. Bordy, O. Cioni, L. Hervé, C. Fromentin, J. Dinten and C. Allier, “Wide-Field Lensfree Imaging of Tissue Slides,” Proc. SPIE 9536, Advanced Microscopy Techniques IV and Neurophotonics II, 95360K (2015).
[15] W. Luo, A. Greenbaum, Y. B. Zhang and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light: Sci Applic 2015, 4, e261 (2015).
[16] W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181-11191 (2010).
[17] I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[18] G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
[19] C. Cheng, Y. Lin, M. Hsieh, and H. Tu, “Complex modulation characterization of liquid crystal spatial light modulators by digital holographic microscopy,” Jpn. J. Appl. Phys. 47, 3527–3529 (2008).
[20] J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
[21] L. A. Williams, G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms,” Appl. Opt.54, 1443-1452 (2015).
[22] C. Liu, Z. Liu, F. Bo, Y. Wang and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143 (2002).
[23] M. Kim, Y. Choi, F. Christopher, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett.36, 148-150 (2011).
[24] Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263-4265 (2011).
[25] X. Lai, H. Tu, C. Wu, Y. Lin, and C. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54, A51-A58 (2015).