簡易檢索 / 詳目顯示

研究生: 林桂暖
Lin Kuei-Nuan
論文名稱: 在橢圓曲線上的解log問題
The discrete logarithm problem on an elliptic curve
指導教授: 于靖
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2000
畢業學年度: 88
語文別: 英文
論文頁數: 28
中文關鍵詞: 橢圓曲線解log問題
英文關鍵詞: elliptic curve, discrete logarithm
論文種類: 學術論文
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這一篇論文主要討論在橢圓曲線上解log問題,我把M-O-V, Semave, 和Voloch的論文作重新的整理。
    橢圓曲線上解log問題如下:E是一個在有限體F上的橢圓曲線,給曲線上任兩點有理點P, Q. 我們想算出是否有整數m滿足Q=[m]P.
    如果P的order是n,且F的特徵值是p,我們分兩個部分討論
    (1)n跟p互質
    (2)n跟p不互質
    並且我們比較出每個方法的優缺點。

    In this master thesis, we talk about the discrete logarithm on an elliptic curve, and this is a reorganization of M-O-V's, Semaev's, and Voloch's papers.
    Let E be an elliptic curve over a finite field F and char(F)=p,
    the discrete logarithm problem on an elliptic curve is to compute an integer m such that Q=[m]P, where P and Q are rational points on E. If P has order n, we consider two cases:
    (1)gcd(n,p)=1
    (2)gcd(n,p) is not 1
    Finally, we can use the Chinese remainder theorem to compute m

    1. Introduction 2. Preliminaries of elliptic curve 3. Reducing Elliptic curve logarithm with gcd(n,q)=1 4. Evaluation of discrete logarithm in a group of p-torsion points of an elliptic curve in characteristic 5. Reducing elliptic curve logarithm with gcd(n,q) is not 1

    [MOV] A.Menezes, T.Okamoto and S. Vanstone, Reducing elliptic curves logarithms to logarithms in a finite field, IEEE Trans. Info. Theory, 39(1993) 1639-1646.
    [M] Alfred Menezes, Elliptic curve public key crytosystems, kluwer Academic Puublishers, 1993.
    [Se] I.A. Semave, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p, Math. Comp.,67(1998),353-356.
    [V1] J.F. Voloch, The discrete logarithm problem on elliptic curves and descents, to appear. Available at http://www.ma.utexas.edu/users/voloch
    [V2] J.F. Voloch, Explicit p-descent for elliptic curves in character p, Composition Math. 74(1990) 247-258
    [V3] J.F. Voloch, An analogue of the Weierstrass z-function in characteristic p, Acta Arithmetica. LXXIX(1997)1-6.
    [Si] J.H. Silverman, The arithmetic of elliptic curves, Springer, New York,1986.
    [J] N. Jacobson, Basic algebra II, W.H Freeman and Company
    [Ser] Jean-Pierre Serre, Local fields, GTM67, Springer, New York, 1979
    [Sc1] R. Schoof, Elliptic curves over finite fields and computation of square roots mod p, Math. of Comp.,44(1985),483-494.
    [Sc2] R. Schoof, Nonsingular plane cubics over finite field, J Combinant Theory, A46(1987)183-211.
    [VW] J.F. Voloch and J.L. Waiker, Euclidean weights of codes from elliptic curves over rings, Preprint, 1997
    [H] I.N. Herstein, Topics in algebra, Waltham, Mass.: Blaisdell Publishing Company, 1987.

    無法下載圖示
    QR CODE