研究生: |
洪誠宏 |
---|---|
論文名稱: |
抽象柯西問題與應用 The Cauchy Problem and Related Applications |
指導教授: |
張幼賢
Chang, Yu-Hsien |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 半群 |
論文種類: | 學術論文 |
相關次數: | 點閱:170 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
這篇論文分成兩部分,第一部分討論factored inhomogeneous linear equations在 Banach 空間上。第二部分討論抽象 Cauchy problem 的擾動在不同的拓樸空間。論文的安排如下:
第一章我們討論factored inhomogeneous linear equations 並使用d’Alembert formula 找到它的解。第二章我們探討C-semigroups 的 relative bounded perturbation 在 Banach 空間上。 得到下面的結論若 A 是一個 C-semigroup 的生成元在 Banach (X) 空間上, B 是一個 relative A-bounded 的運算子, 那麼 可生成一個 C-semigroup 在 X上。 第三章我們將第二章的結論推廣到sequentially complete locally convex space 上。 第四章我們將第三章的理論應用到實際上的問題也就是光子在星際間的傳播。最後一章我們討論 semigroups 有下面的結果: 若A 是一個 semigroups 的生成元 forcing term function 滿足 local Lipschitz condition 那麼 the abstract semilinear initial value problem 有唯一解 。 在每章後面我們都附上一些partial differential equations的例子。
Abstract
This thesis consists of two parts. The first part is discussing the factored inhomogeneous linear equations in Banach space. The second part is concerning perturbations of abstract Cauchy problem in various topological spaces. We arrange this thesis as follows: In Chapter 1 we study the factored inhomogeneous linear equation. We get a generalized d’Alembert formula to get the solution of this factored equation. In chapter 2 we study the relative bounded perturbation of C-semigroups on Banach space. We show that if A generates a C-semigroup on a Banach space, B is a relative A-bounded operator, then also generates a (analytic) C-semigroup on the same space. In chapter 3 we generalized the results in chapter 2 to sequentially complete locally convex space. In chapter 4 we study the photon transport problem, in there we apply the results gotten from chapter 3 to solve this problem. In the last chapter, we study the semigroups. We show that if A generates a semigroup on a topological space and the forcing term function satisfies local Lipschitz condition, then the abstract semilinear initial value problem will has a unique solution. The applications of these results to certain partial .differential equations were given in each chapter.
References
[1] V. A. Babalola, Semigroups of operators on locally convex spaces, Trans. Amer.Math. Soc.199(1974), 163-179.
[2] Y. H. Choe, -Semigroups on a locally convex space J. Math. Anal. and Appal., 106(1985), 293-320.
[3] R. deLaubenfel, "Existence Families, Functional Calculi and Evolution Equations", Lecture Notes in Mathematics (1570) Spring-Verlag, Berlin, 1994.
[4] R. deLaubenfel, Existence and Uniqueness families for abstract Cauchy problem, J. London Math. Soc. (2) 44 (1991) 310-338.
[5] K. J. Engel. and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts Mathematics, vol. 194, Spring-Verlag, New York, 2000.
[6] L.C. Eran, (1998). Partial Differential Equation, Providence: Amer.Math. soc.
[7] Gerald B. Folland, “Real analysis: modern techniques and their application” John Wiley and Sons, New York, 1999 Second Edition.
[8] G. R.Goldstein, J. A. Goldstein, and E. Obrecht, (1996). Structuture of solutions to linear evolution equation: extensions of d'Alembert formula, J. Math. Anal. App.201, no.2, p461-477.
[9] J. A. Goldstein and J. T. Sandefur, (1987). An abstract d'Alembert formula, SIAM J. Math.Anal.18, p842-856.
[10] J. A. Goldstein (1986). Asymptotics for boundedsemigroups on Hilbert space, in '' Aspectcts of Postivity in functional Analysis,'' p.49-62 (Nagel, R., schlotterbeck, U and Wolff, M.P.H., Eds), North-Holland :Elsevier, Dordrecht.
[11] J. A. Goldstein and G. Shi, (1995) in ''evolution Equations and applications '' (A.McBride and G. Roach,Eds), p.3-17, New York :Longman, Harlow.
[12] J. A. Goldstein, R. deLaubenfels, and J. T. Sandefur, (1993). Regularizer semigroups, iterated Cauchy problems, and equipartition of energy, Monats.Math 115, p47-66.
[13] E. Hille, and R. H. Phillips, (1957). Functional Analysis and semigroups, Providence :Amer.Math.soc.
[14] G. Köthe, “Topological vector spaces I”, Spring-Verlag, New York/heidelberg/Berlin, 1979.
[15] G. Köthe, “Topological vector spaces II”, Springer-Verlag, New York / Heidelberg / Berlin, 1979.
[16] S. Kantorovitz, The Hille-Yosida space of an arbitrary operator, J. Math. Anal. and Appl., 136(1988), 107-111.
[17] T. Komura, Semigroups of operators in locally convex spaces, J. Fun. An. 2 (1968), 258-296.
[18] Meri Lisi and Silvia Totaro, Photon transport with a localized source in locally convex spaces, Math. Meth. Appl. Sci. 2006; 29:1019-1033.
[19] Meri Lisi and Silvia Totaro, ''Inverse Problem Related to Photon Transport in an Interstellar Cloud'', Transport Theory and Statistical Physics. Vol. 32, Nos. 3& 4, pp. 327-345, 2003
[20] I. Miyadera, Semigroup of operator in Fréchet space and application to partial differential equations, Tôhoku Math. J (2) 11 (1959), 162-183.
[21] A. Pazy, "Semigroups of Linear operators and Applications to Partial Differential Equations", Spring-Verlag, 1983.
[22] M. M. H. Pang, Resolvent estimates for Schrodinger in and the theory of exponentially bounded -semigroups, Semigroup Forum 41 (1990), 97-114.
[23] R. Rudnicki, Chaos for some infinite-dimensional dynamical systems. Mathematical Methods in the Applied Sciences 2004; 27:723-738., 1968 Second Edition.
[24] S.Y. Shaw, C.C. Kuo , and Y.C. Li, Perturbation of local C-semigroups, Nonlinear Analysis 63 e2569-e2574 (2005)
[25] F. Treves, '' Topological Vector Spaces, Distributions and Kernals''\ AcademicPress: London,1967.
[26] Eduardo V. Teixeira, Strong solutions for differential equations in abstract spaces, J. Differential Equations 214. (2005) p65-91.
[27] K. Yosida, ''Functional analysis,'' Academic Press, New York, 1968 Second Edition.