簡易檢索 / 詳目顯示

研究生: 吳宗賢
Wu, Chung-Xian
論文名稱: 結合電化學方法與電子顯微鏡探討鍍鋅鋼板表面塗層之抗蝕研究
A Study On Combining Electrochemical Methods And Electron Microscope To Explore Corrosion Resistance Of Coating On Zn-Coated Steel Sheet
指導教授: 呂家榮
Lu, Chia-Jung
口試委員: 劉茂煌
Liu, Mao-Huang
李君婷
Li, Chun-Ting
呂家榮
Lu, Chia-Jung
口試日期: 2023/06/16
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 抗蝕性氧化矽奈米複合塗層鋯鈍化處理鍍鋅鋼板
英文關鍵詞: corrosion resistance, silicon dioxide nano-composite coating, zirconium passivation treatment, galvanized steel sheet
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300941
論文種類: 學術論文
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1研究動機 1 1.2 金屬的腐蝕和抗腐蝕 2 1.2.1 金屬材料的腐蝕 2 1.2.2 腐蝕的分類 3 1.2.3 抗腐蝕方法 7 1.3 鍍鋅鋼板表面處理 10 1.3.1 鈍化處理 12 1.3.2 塗油 13 1.3.3 抗指紋薄膜 13 1.4 溶膠–凝膠法 14 1.4.1 水解反應(Hydrosis) 14 1.4.2 縮合反應(Condensation) 15 1.5 塗層塗佈方式 17 1.5.1 沉浸塗佈法(Dip coating) 17 1.5.2 旋轉塗佈法(Spin coating) 17 1.5.3 噴霧塗佈法(Spray coating) 18 1.5.4 電泳塗佈法(Electrophoretic deposition) 18 1.5.5 滾輪塗佈法 19 1.6 鋼板表面塗層抗蝕性分析方法 20 1.6.1 塔弗曲線(Tafel) 20 1.6.2 電化學阻抗譜(Electrochemical impedance spectroscopy) 22 1.6.3 掃描式電子顯微鏡(Scanning electron microscope) 28 1.6.4 能量色散X射線譜 29 1.6.5 動態光散色粒徑分析儀(Dynamic Light Scattering) 31 1.6.6 鹽霧試驗(Salt-spray test) 32 第二章 實驗部分 33 2.1 實驗藥品與儀器 33 2.1.1 實驗藥品 33 2.1.2 器材與設備 34 2.1.3 分析儀器 35 2.2 配方之製備 40 2.2.1 製備E配方 40 2.2.2 製備DD配方 41 2.2.3 鋯鈍化液之製備 41 2.3 實驗方法 42 2.3.1 鋯鈍化鋼板處理 43 2.3.2 塗佈E配方與DD配方試片 44 2.3.3 掃描式電子顯微鏡試片前處理 45 2.3.4 Tafel曲線數據處理 46 第三章 結果與討論 47 3.1 環保型鋯鈍化塗層之研究 47 3.1.1 不同鈍化液濃度 47 3.1.2 鈍化液pH值對抗蝕性之影響 53 3.2 含矽封孔劑之研究 63 3.2.1 E配方討論 63 3.2.2 DD配方討論 66 3.2.3 不同含矽封孔劑對抗腐蝕性之差異 67 3.3 磷酸皮膜鈍化塗層之探討 73 3.3.1 表面結構與成分分析 73 3.3.2 電化學分析儀測量結果 76 3.4 鋅鎳層與電鍍鎳抗腐蝕之研究 79 3.4.1 表面結構與成分分析 79 3.4.2電化學分析儀量測結果 83 第四章 結論及未來展望 87 參考文獻 89

    Sankara Narayanan, T. Surface pretretament by phosphate conversion coatings-A review. Reviews in Advanced Materials Science 2005, 9, 130-177.

    Ross, W. Preserving metals from oxidation. British patent 1869, (3119).

    Eppensteiner, F. W.; Jenkins, M. R. Chromate conversion coatings. Metal finishing 1999, 97 (1), 494-506.

    Wilbur, S.; Abadin, H.; Fay, M.; Yu, D.; Tencza, B.; Ingerman, L.; Klotzbach, J.; James, S. Health effects. In Toxicological Profile for Chromium, Agency for Toxic Substances and Disease Registry (US), 2012.

    Lostak, T.; Maljusch, A.; Klink, B.; Krebs, S.; Kimpel, M.; Flock, J.; Schulz, S.; Schuhmann, W. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism. Electrochimica Acta 2014, 137, 65-74.

    Costa, J. S.; Agnoli, R. D.; Ferreira, J. Z. Corrosion behavior of a conversion coating based on zirconium and colorants on galvanized steel by electrodeposition. Tecnologia em Metalurgia, Materiais e Mineração 2015, 12 (2), 167-175.

    謝文婓, 開執中, 蔡春鴻. 鋯合金腐蝕行為研究(1940-1995). 防蝕工程 第10卷第三期 第178~195頁 民國85年9月.

    Fockaert, L.; Pletincx, S.; Ganzinga-Jurg, D.; Boelen, B.; Hauffman, T.; Terryn, H.; Mol, J. Chemisorption of polyester coatings on zirconium-based conversion coated multi-metal substrates and their stability in aqueous environment. Applied Surface Science 2020, 508, 144771.

    Milošev, I.; Frankel, G. S. Review—Conversion Coatings Based on Zirconium and/or Titanium. Journal of The Electrochemical Society 2018, 165 (3), C127-C144.

    傳統磷化轉鋯系薄膜前處理的前期工藝試驗分析。檢索於2023/5/26自https://www.auto-made.com/news/show-10850.html

    Stromberg, C.; Thissen, P.; Klueppel, I.; Fink, N.; Grundmeier, G. Synthesis and characterisation of surface gradient thin conversion films on zinc coated steel. Electrochimica Acta 2006, 52 (3), 804-815.

    Lunder, O.; Simensen, C.; Yu, Y.; Nisancioglu, K. Formation and characterisation of Ti–Zr based conversion layers on AA6060 aluminium. Surface and Coatings Technology 2004, 184 (2-3), 278-290.

    Tamura, H. The role of rusts in corrosion and corrosion protection of iron and steel. Corrosion Science 2008, 50 (7), 1872-1883.

    Cui, H.; Liu, Y.; Ren, W. Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Advanced Powder Technology 2013, 24 (1), 93-97.

    Fontana, M. G.; Greene, N. D. Corrosion engineering; McGraw-hill, 2018.

    楊聰仁. 腐蝕概論. 防蝕工程 第六卷第二期 第57~65頁 民國81年6月.
    Huang, X.-z.; Wang, D.; Yang, Y.-t. Effect of Precipitation on Intergranular Corrosion Resistance of 430 Ferritic Stainless Steel. Journal of Iron and Steel Research International 2015, 22 (11), 1062-1068.

    Sulzer Pumps (2010).Centrifugal Pump Handbook (Third Edition) pages 227-250. Butterworth-Heinemann. 978-0-7506-8612-9.

    Jerome P. Lynch, Hoon Sohn and Ming L. Wang (2022). Sensor Technologies for Civil Infrastructures (Second Edition) pages 427-462. Woodhead Publishing. 978-0-08-102706-6.

    Zheng, S.; Li, J. Inorganic–organic sol gel hybrid coatings for corrosion protection of metals. Journal of Sol-Gel Science and Technology 2010, 54, 174-187.

    Walock, M. J. Nanocomposite coatings based on quaternary metal-nitrogen and nanocarbon systems; The University of Alabama at Birmingham, 2012.

    Tezdogan, T.; Demirel, Y. K. An overview of marine corrosion protection with a focus on cathodic protection and coatings. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike 2014, 65 (2), 49-59.

    Bashi, S. M.; Mailah, N. F.; Mohd Radzi, M. A. Cathodic protection system. In Proceedings. National Power Engineering Conference, 2003.

    Khan, M. S.; Kakar, F. K.; Saeed, M.; Khan, A.; Ali, B.; Ashraf, M.; Khan, S.; Tareen, A. W. Economic analysis of DC power sources used in impressed current cathodic protection of underground pipelines. Indian Journal of Science and Technology 2021, 14 (10), 897-904.

    陳鴻賓. 不鏽鋼的耐腐蝕性. 防蝕工程.1992, 6(1), 44-60.

    楊育銓. 電鍍鋅鋼板的複合型三價鉻鈍化處理. 國立臺灣大學, 2012.

    Yoshimi, N.; Ando, S.; Matsuzaki, A.; Kubota, T.; Horisawa, T.; Okamoto, K. Properties of Chromium-free Coated Steel Sheet" GEO-FRONTIER-COAT". NKK TECHNICAL REPORT-JAPANESE EDITION- 2000, 29-33.

    洪玉安. 環保型抗指紋劑塗佈熱浸鍍鋁鋅鋼板之散熱效果評估. 國立高雄應用科技大學,2011.

    Sol-gel process. Retrieved May 28, 2023, from
    https://en.wikipedia.org/wiki/Sol%E2%80%93gel_process

    Tański, T.; Matysiak, W.; Krzemiński, Ł.; Jarka, P.; Gołombek, K. Optical properties of thin fibrous PVP/SiO2 composite mats prepared via the sol-gel and electrospinning methods. Applied Surface Science 2017, 424, 184-189.

    Rao, K. S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K. A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 2005, 289 (1), 125-131.

    Kim, E. K.; Won, J.; Do, J.-y.; Kim, S. D.; Kang, Y. S. Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. Journal of Cultural Heritage 2009, 10 (2), 214-221.

    Barczak, M.; McDonagh, C.; Wencel, D. Micro-and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015). Microchimica Acta 2016, 183, 2085-2109.

    Pillai, S. C.; Hehir, S (2017). Sol-Gel Materials for Energy, Environment and Electronic Applications pages 197-199. Springer Cham. 978-3-319-50144-4.

    Barczak, M.; McDonagh, C.; Wencel, D. Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015). Microchimica Acta 2016, 183 (7), 2085-2109.

    ALOthman, Z. A. A review: fundamental aspects of silicate mesoporous materials. Materials 2012, 5 (12), 2874-2902.

    Bergna, H. E. Colloid chemistry of silica: An overview. 1994.

    Obregón, S.; Rodríguez-González, V. Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review. Journal of Sol-Gel Science and Technology 2021, 102 (1), 125-141.

    Mishra, A.; Bhatt, N.; Bajpai, A. Nanostructured superhydrophobic coatings for solar panel applications. In Nanomaterials-Based Coatings, Elsevier, 2019; pp 397-424.

    Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. Journal of Manufacturing and Materials Processing 2019, 3 (1).

    Spange, S. Electrochemical synthesis of novel polyaniline-montmorillonite nanocomposites and corrosion protection of steel. Chemnitz: Chemnitz University of Technology 2006.

    Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology 2020, 11 (1), 1-13.

    林恩立. 抑制型、阻絕型與犧牲型塗層系統與含氯環境中之電化學交流阻抗頻譜分析. 國立成功大學, 2014.

    曾啟恩, 吳翊慈, 蔡秉均. 電化學阻抗頻譜的原理與應用. 國立臺灣科技大學機械工程系, 2022.

    McIntyre, J. M.; Pham, H. Q. Electrochemical impedance spectroscopy; a tool for organic coatings optimizations. Progress in Organic coatings 1996, 27 (1-4), 201-207.

    Mei, B.-A.; Lau, J.; Lin, T.; Tolbert, S. H.; Dunn, B. S.; Pilon, L. Physical interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage. The Journal of Physical Chemistry C 2018, 122 (43), 24499-24511.

    Walock, M. J. Nanocomposite coatings based on quaternary metal-nitrogen and nanocarbon systems; The University of Alabama at Birmingham, 2012.

    Energy Dispersive X-Ray Spectroscopy (EDS/EDX). Retrieved May 28, 2023, from https://reurl.cc/v7dm3l

    Dynamic light scattering. Retrieved May 28, 2023, from
    https://en.wikipedia.org/wiki/Dynamic_light_scattering

    Hassan, P. A.; Rana, S.; Verma, G. Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 2015, 31 (1), 3-12.

    Hiromoto, S. Corrosion of calcium phosphate coated AZ31 magnesium alloy under a salt spray test. Materials Transactions 2012, 53 (4), 700-706.

    Astuty, A.; Dalila, S. M. Z.; Liza, M. A.; Aezal, M. F. Evaluation of corrosion performance of zinc-plated underhood automotive fasteners using salt spray test. In Key Engineering Materials, 2015; Trans Tech Publ: Vol. 659, pp 560-564.

    Qian, Y,; Jin, K.; Lu S,; Lv, L. Research on salt spray test of power facilities based on standardized laboratory construction. In IOP Conference Series: Materials Science and Engineering, 2020; IOP Publishing: Vol. 782, p032013.

    阮玟馨. 金屬表面奈米塗層與輸水改質之抗腐蝕研究. 國立臺灣師範大學, 2023.

    蕭家安. 電鍍鋅鋼板無鉻抗蝕皮膜與電化學阻抗行為研究. 國立臺灣師範大學, 2020.

    無法下載圖示 電子全文延後公開
    2028/06/01
    QR CODE