研究生: |
魏語潔 Wei, Yu-Jie |
---|---|
論文名稱: |
使用單分子技術研究棘黴素和小分子藥物減緩致病串聯重複DNA序列的滑動現象 Single-Molecule Study on the Retardation of DNA Slipping Motions in Error-Prone Tandem DNA Repeats Using Echinomycin and a Small-molecule Drug |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 單分子螢光共振能量轉移 、d(CCG)n重複序列 、染色體XE易脆症 、三核苷酸重複序列相關疾病的潛力藥物 |
英文關鍵詞: | CCG repeats, Fragile XE syndrome (FRAXE), small-molecule drug |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.054.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三核苷酸重複序列 (TNR) 的擴增是造成許多遺傳性疾病的原因,而髮夾型二級結構的形成被認為是容易造成DNA滑動進而之擴張的主要原因。其中當d(CCG)n重複序列之重複次數超過200-900次時,將會導致染色體XE易脆症 (Fragile XE syndrome),患有此疾病之病患將嚴重影響思維能力和認知功能。我們利用單分子螢光共振能量轉移 (Single-molecule fluorescence resonance energy transfer) 光譜學研究 d(CCG)n 重複序列之結構動力學,發現重複次數為10次以上之d(CCG)n序列會摺疊成兩種髮夾型二級結構,且之間有相互轉換之行為,且轉換頻率隨著重複次數的增加而增加,而我們鑑定出此一在高重複次數才出現的髮夾結構為髮夾莖的尾端不穩定所導致。由於針對三核苷酸重複序列髮夾結構的穩定具有預防及治療這些疾病的潛力。我們利用了單分子實驗觀察 d(CCG) 連續序列的不穩定與 d(CTG) 重複序列的滑動,分別測試了兩種DNA結合藥物,棘黴素 (Echinomycin) 與另一來自齊默爾曼 (Zimmerman) 團隊所研究之小分子化合物,結果顯示兩種化合物對連續序列的不穩定性皆具有顯著的抑制能力而推斷其具有良好的結合性,特別的是當混合使用兩種藥物時有著非常顯著的穩定作用,具有潛力開發成為三核苷酸重複序列相關疾病的潛力藥物。
Expansion of trinucleotide repeats (TNRs) was responsible for many genetic disorders, and the forming of the secondary structures such as hairpin is believed to be the major cause of the error-prone expansion. Among them, tandem d(CCG) repeats with over 200-900 units cause Fragile XE syndrome (FRAXE), which severely affect the thinking ability and cognitive functioning. We used single-molecule fluorescence resonance energy transfer (smFRET) spectroscopy to study structural dynamics of CCG repeats and apply the result to the drug testing. We found that d(CCG) repeats with over 10 units show transitions between two hairpin configurations and the frequency of transitions increase as repeat number increase. We identified that the hairpin configuration of the d(CCG) repeats of higher repeat numbers are due to the instability at the termini. Stabilizing TNR hairpin structures using small-molecule drugs may inhibit TNR slippage motions associated with error-prone gene expansion. Here, we tested two DNA binding drugs, Echinomycin and a small-molecule drug developed by the Zimmerman group, on our single-molecule assays of dCCG and dCTG repeats. Both of them showed good stabilization capabilities to the dynamical motions, hence, can be candidates for the TNR related diseases. Surprisingly, we found that the combination of these two small-molecule drugs has shown promising effects on the stabilizing the hairpin structures of tandem repeats of DNA.
[1] Piotr Kozlowski, Mateusz de Mezer and Wlodzimierz J. Krzyzosiak. Trinucleotide repeats in human genome and exome. Nucleic Acids Research. 2010, 38, 4027–4039.
[2] Sergei M. Mirkin. Expandable DNA repeats and human disease. Nature. 2007, 447, 932-40.
[3] Cynthia T. McMurray. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 2010, 11, 886.
[4] Guoqi Liu, Xiaomi Chen, John J Bissler, Richard R Sinden and Michael Leffak. Replication dependent instability at (CTG)•(CAG) repeat hairpins in human cells. Nat. Chem. Biol. 2010, 6, 652–659.
[5] Orr HT.; Zoghbi HY. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 2007. 30, 575–621
[6] Maureen A. Leehey, M.D. Fragile X-associated Tremor/Ataxia Syndrome (FXTAS): Clinical Phenotype, Diagnosis and Treatment. NIH Public Access. 2009, 57, 830–836
[7] Genetics Home Reference, Fragile XE syndrome, 10/7/2018. From
https://ghr.nlm.nih.gov/condition/fragile-xe-syndrome
[8] Grant R. Sutherland, John C. Mulley. Prenatal Diagnosis . 1996, 16, 1199-1211
[9] Michael Mitas. Trinucleotide repeats associated with human disease. Nucleic Acids Research. 1997, 25(12), 2245–2253
[10] Lisa D Moore ,Thuc Le and Guoping Fan. DNA Methylation and Its Basic Function. Neuropsychopharmacology Reviews . 2013, 38, 23–38
[11] Manel Esteller. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Nature. 2002, 21, 5427 – 5440
[12] Aime´e M. Deaton and Adrian Bird. CpG islands and the regulation of transcription. Genes & Development (Review). 2011, 25, 1010-1022
[13] Jabbari K,Bernardi G.Cytosine methylation and CpG, TpG (CpA) and TpA frequencies.Gene. 2004, 333, 143-149
[14] Beggs AD, Jones A, El-Bahrawy M, El-Bahwary M, Abulafi M, Hodgson SV, Tomlinson IP. Whole-genome methylation analysis of benign and malignant colorectal tumours. Journal of Pathology. 2013, 229(5), 697–704
[15] Xiangrong Cu , Xuan Jing, Xueqing Wu, Meiqin Yan, Qiang Li, Yan Shen and Zhenqiang Wang. DNA methylation in spermatogenesis and male infertility (Review). Experimental and Therapeutic Medicine . 2016, 12, 1973-1979
[16] Adrian Bird. DNA methylation patterns and epigenetic memory. Genes & Development . 2018, 16, 6–21
[17] Guy-Franck Richard, Alix Kerrest, and Bernard Dujon. Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiology and Molecular Biology Reviews . 2008, 72, 686-727
[18] S. V. Mariappan, A. E. Garcoa and G. Gupta. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic Acids Research. 1996, 24, 775–783.
[19] Pearson, C. E.; Nichol Edamura, K.; Cleary, J. D. Repeat Instability: Mechanisms of Dynamic Mutations. Nat. Rev. Genet. 2005, 6 (10), 729.
[20] Pei-Ching Wu, Shu-Ling Tzeng, Chung-ke Chang, Ya-Fen Kao, Michael J. Waring and Ming-Hon Hou. Cooperative recognition of T:T mismatch by echinomycin causes structural distortions in DNA duplex. Nucleic Acids Research. 2018, 1, 1-8
[21] Dehe Kong, Eun Jung Park, Andrew G. Stephen, Maura Calvani,John H. Cardellina, Anne Monks, Robert J. Fisher, Robert H. Shoemaker, and Giovanni Melillo. Echinomycin, a Small-Molecule Inhibitor of Hypoxia-Inducible Factor-1 DNA-Binding Activity. Cancer Research. 2005, 65, 9047-9055
[22] Jonathan F. Arambula, Sreenivasa Rao Ramisetty, Anne M. Baranger1, and Steven C. Zimmerman. A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding. PNAS. 2009, 106, 16068-16073
[23] 倪丞緯。2017。以單分子光譜觀測 CTG 重複序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學所
[24] F. Ritort. Single-molecule experiments in biological physics: methods ansd applications. J. Phys. Condens. Matter. 2006, 18, 531-583.
[25] Helms. Volkhard. (2008) Principles of Computational Cell Biology.
[26] Zheng, Jie. Spectroscopy-Based Quantitative Fluorescence Resonance Energy Transfer Analysis. Ion Channels: Methods and Protocols. 2006, 337, 65-77
[27] Ishikawa-Ankerhold, H. C., Ankerhold, R. & Drummen, G. P. C. Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012, 17, 4047–4132.
[28] 李以仁、許顥頤、秦志皞、吳佳諭(2015)。「單分子螢光共振能量轉移光譜簡介」。化學,73卷4期,303-12。
[29] 許顥頤。2016。以單分子螢光共振能量轉移光譜研究人類端粒序列形成的鳥嘌呤四股結構之構形變化與動力學數據分析在不同實驗因素下的影響。碩士學位論文。台北:國立臺灣師範大學化學所
[30] 黃子芸。2016。利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。
[31] Sulfo-Cyanine3 NHS ester , Lumiprobe Corporation <http://www.lumiprobe.com/p/sulfo-cy3-nhs-ester.
[32] 5' Amino Modifier C6, Integrated DNA Technologies, Inc <https://sg.idtdna.com/site/Catalog/Modifications/Product/1082>.
[33] Thorben Cordes, Jan Vogelsang and Philip Tinnefeld. On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. J. Am. Chem. Soc. 2009, 131, 5018–5019.
[34] Theodorus H. De Koker and others, Isolation and Purification of Pyranose 2-Oxidase from Phanerochaete Chrysosporium and Characterization of Gene Structure and Regulation. Applied and Environmental Microbiology. 2004, 70, 5794–5800
[35] Rahul Roy, Sungchul Hohng and Taekjip Ha, A Practical Guide to Single-Molecule FRET. Nat. Methods. 2008, 5, 507–516
[36] Chandran R. Sabanayagam, John S. Eid and Amit Meller, Using Fluorescence Resonance Energy Transfer to Measure Distances along Individual DNA Molecules: Corrections due to Nonideal Transfer. Journal of Chemical Physics. 2005, 122, 061103-1-5.
[37] A. Marquis Gacy, Geoffrey Goellner, Nenad Juranic,Slobodan Macura, and Cynthia T. McMurray. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995, 81, 533-540.