研究生: |
趙國欽 |
---|---|
論文名稱: |
抽象展發方程之探討及其應用 |
指導教授: | 張幼賢 |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
中文關鍵詞: | 無 |
論文種類: | 學術論文 |
相關次數: | 點閱:302 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要目的是探討抽象展發方程
(1)的解之存在性、唯一性、漸進行為與其應用。其中,算子族 在Banach空間 生成一個 -evolution system。第一章先介紹一些相關被景與預備知識。
第二章提出一些關於抽象展發方程(1)的mild solution存在性與唯一性之充分條件。在第二章為基礎下,第三章討論一些關於抽象微分方程(2)的classical solution存在性與唯一性之充分條件。其中算子 在Banach空間 生成一個 -semigroup。另外,在本章亦討論關於抽象展發方程(1)的Y-value solution存在性與唯一性之充分條件。
第四章主要討論抽象展發方程(1)在那些適當的條件下,其解將滿足conditional stability的漸進行為。若抽象展發方程(1)中算子族 在Banach空間 生成一個 -evolution system時,第五章描述另外一些適當的條件下,其解將滿足conditional stability的漸進行為。
在每章的最後一節都呈現一些例子。這些例子皆為該章節的應用。
1. W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel Journal of Mathematics, 59 (1987), 327-352.
2. W. Arendt and H. Kellermann, Integrated solutions of Volterra integrodifferential equations and applications. In: Volterra Integrodifferential Equations in Banach spaces and Applications, Pitman Research Notes in Mathematics Series 190, Great Britain, 1989.
3. Y. H. Chang and R. H. Martin, JR., Dichotomies for abstract semilinear equations, Journal of Mathematical Analysis and Applications 189, 194-214, 1995.
4. Y. H. Chang, Dichotomies and asymptotic behaviour for semilinear differential systems, Chinese Journal of Mathematics (Taiwan, R. O. C.) Vol. 22, No. 3, 203-241, 1994.
5. Y. H. Chang and G. C. Jau, Semilinear differential equations in Banach spaces, Commun. Appl. Nonlinear Anal. 7, Number 3, 2000, 47-62.
6. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Health, Boston, 1965.
7. W. A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, New York, 1978.
8. E. B. Davies and M. M. H. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987), 181-208.
9. R. Delaubenfels, C-semigroups and the Cauchy problem, Journal of Functional Analysis 111 (1993), 44-61.
10. R. Delaubenfels, Existence Families, Functional Calculi and Evolution Equations, Springer-Verlag, New York, 1994.
11. Z. Deming and X. Min, Exponential trichotomy, orthogonality condition and their application, Chin. Ann. Of Math. 18B:1 (1997), 55-64.
12. S. Elaydi and O. Hajek, Exponential trichotomy of differential systems, Journal of Mathematical Analysis and Applications 129 (1988), 362-374.
13. G. B. Folland, Introduction to Partial Differential Equations, Princeton Univ. Press, Princeton, NJ, 1976.
14. A. Goldstein, R. Delaubenfels and J. T. Sandefur, Regularized semigroups, iterated Cauchy problems and equipartition of energy, Mathematik 115 (1993), 47-66.
15. L. Hormander, Estimates for translation invariant operators in space, Acta. Math. 104 (1960), 93-140.
16. H. Jialin, Exponential trichotomies and fredholm operators, Ann. of Diff. Eqs. 9(1) (1993), 37-43.
17. H. Jialin, Exponential trichotomy and uniformly characteristic exponents of differential systems, Ann. of Diff. Eqs. 7(3) (1991), 272-277.
18. H. Kellerman, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180.
19. E. Kreyszig, Introductory Functional Analysis with Applications, Springer-Verlag, New York, 1978.
20. Y. C. Li and S. Y. Shaw, Hermitian and positive C-semigroups on Banach spaces, Publications of the Research Institute for Mathematical Sciences Kyoto University 31 (1995), 625-644.
21. R. H. Martin, JR., Nonlinear Operators and Differential Equations in Banach Spaces, Academic Press, New York, 1976.
22. I. Miyadera, On the generators of exponentially bounded C-semigroups, Proc. Japan Acad., 62 (1986), 239-242.
23. F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific Journal of Mathematics, 135 (1988), 111-155.
24. M. M. H. Pang, Resolvent estimates for Schrodinger operators in and the theory of exponentially bounded C-semigroups, Semigroup Forum, 41 (1990), 97-114.
25. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
26. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
27. W. Rudin, Functional Analysis, John Wiley & Sons, New York, 1978.
28. W. Rudin, Real and Complex Analysis, McGraw-Hill, Inc., New York, 1987.
29. D. A. Sanchez, Ordinary Differential Equations and Stability Theory: an Introduction, Dover Publications, Inc. New York, 1978.
30. N. Tanaka, On the exponentially bounded C-semigroups, Tokyo J. Math. 10 (1987),107-117.
31. N. Tanaka and I. Miyadera, Some remarks on C-semigroups and integrated semigroups, Proc. Japan Acad., 63 (1987), 139-142.
32. N. Tanaka, Linear evolution equations in Banach spaces, Proc.London Math. Soc. (3) 63 (1991), 657-672.
33. N. Tanaka and I. Miyadera, C-semigroups and the abstract Cauchy problem, Journal of Mathematical Analysis and Applications 170 (1992), 196-206.
34. N. Tanaka, Semilinear equations in the hyperbolic case, Nonlinear analysis, Theory, Methods & Applications, Vol. 24, No. 5 (1995), 773-788.
35. R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker. Inc., New York, 1977.
36. A. Wouk, A Course of Applied Functional Analysis, John Wiley & Sons, Inc., New York, 1979.
37. K. Yosida, Functional Analysis, Springer-Verlag, New York, 1978.