簡易檢索 / 詳目顯示

研究生: 李馨月
Li, Hsin-Yueh
論文名稱: 以混合式多準則決策分析模式與結構方程模型探討半導體公司智慧資本對於提升組織績效之影響
Deriving Impacts of Intellectual Capital on Organizational Performance for Improving Semiconductor Firms by a Hybrid MCDM Model with the PLS-SEM Method
指導教授: 黃啟祐
Huang, Chi-Yo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 103
中文關鍵詞: 偏最小平方結構方程模型智慧資本經營績效半導體
英文關鍵詞: DANP-mv
DOI URL: http://doi.org/10.6345/NTNU201901156
論文種類: 學術論文
相關次數: 點閱:373下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智慧財產權為知識經濟最重要之生產要素,對高科技產業而言,其重要性更是不可言喻。全球半導體產業蓬勃發展,成為促成主要工業國家與台灣、韓國等亞洲新興經濟體發展之主要動能。過去,雖然有部份學者嘗試探討智慧資本對於組織績效之影響,唯少有學者由全球半導體領導廠商的角度,訂定理論模式,分析相關議題。因此,本研究擬導入基於網路決策實驗室分析法(Decision Making Trial and Evaluation Laboratory, DEMATEL)之分析網路流程(DEMATEL based Analytic Network Process, DANP),整合修正式VIKOR法(D-DANP-mV,DEMATEL-based Analytic Network Process with modified VIKOR model),建構影響關係圖,除了由智財權角度,評估廠商之營運績效外,並進而以偏最小平方法之結構方程模式驗證影響關係圖之顯著性。本研究將以我國半導體業公開發行廠商為對象,敬邀國內專家學者實證本分析架構之可行性。分析結果表明,經由專家意見透過決策實驗室分析法歸納出智慧資本裡的人力資本因素對於組織績效的影響程度較大;進而透過結構方程模型驗證假說來驗証半導體產業中的智慧資本之人力資本因素與關係資本因素相關連性較甚為緊密。本研究實驗結果得知在半導體產業中智慧資本的人力資本因素,組織的員工知識、內部教育訓練等能有效提升組織的績效。其所定義之理論架構與分析模式除可做為企業訂定營運策略或投資之依據之外,亦可作為未來分析其他科技業智財權對營運績效影響與改善之用。

    Intellectual property rights are the most important production factors of the knowledge economy. For high-tech industries, their importance is even more inexplicable. The global semiconductor industry is booming and has become the main driving force for the development of major industrial countries and emerging economies in Asia such as Taiwan and South Korea. In the past, although some scholars tried to explore the impact of intellectual capital on organizational performance, few scholars defined theoretical models and analyze related issues from the perspective of global semiconductor leaders. Therefore, this study intends to introduce the Decision Making Trial and Evaluation Laboratory (DEMATEL) based Analytic Network Process (DANP) and construct the influence diagram. Further, the theoretic framework will also be confirmed by using the partial least square structural equation modelling (PLS-SEM). This study will invite Taiwanese experts and employees of semiconductor related firms to join the investigations and verify the feasibilities of the analytic framework. The analysis results demonstrate that based on experts’ opinions, the human capital factor has the greatest impacts on organizational performance. Further, based on the analytic results of PLS-SEM, human capital factor of intellectual capital, high level expertise of employees, and successful training programs can effectively improve the performance of the organization.
    The theoretical framework and analysis model being defined can be used as a basis for strategy definitions. Both framework and analytic model can also be used as a basis for analyzing other high technology industries in the future.

    Table of Contents 摘要 i Abstract ii Table of Contents iii List of Figure v List of Table vi Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 3 1.3 Research Purposes 3 1.4 Research Methods 4 1.5 Research Limitation 4 1.6 Research Scope and Thesis Structure 5 Chapter 2 Literature Review 6 2.1 Intellectual Capital 6 2.2 Intangible Capital Classification and Intangible Capital Measure 8 2.3 Intellectual Capital and Performance 9 2.4 Theoretic Models 11 Chapter 3 Research Method 17 3.1 Modified Delphi Method 17 3.2 The Basic PLS Method 21 3.3 The Nature of PLS Path Model 23 3.4 DANP-mV 36 Chapter 4 Empirical Study 45 4.1 Data Collection and Sample 45 4.2 Dimensions and Criteria Definition by Modified Delphi Method 47 4.3 Constructing the Influence of Criterion by Using DEMATEL 54 4.4 Evaluation of the Measurement Model 60 Chapter 5 Discussion 71 Chapter 6 Conclusion 77 Appendix 79 References 97

    Albers, S. (2010). PLS and success factor studies in marketing Handbook of partial least squares (pp. 409-425): Springer.
    Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
    Barathi Kamath, G. (2007). The intellectual capital performance of the Indian banking sector. Journal of intellectual capital, 8(1), 96-123.
    Boedker, C., Mouritsen, J., & Guthrie, J. (2008). Enhanced business reporting: international trends and possible policy directions. Journal of human resource costing & accounting, 12(1), 14-25.
    Bontis, N. (1998). Intellectual capital: an exploratory study that develops measures and models. Management decision, 36(2), 63-76.
    Bontis, N., Chua Chong Keow, W., & Richardson, S. (2000). Intellectual capital and business performance in Malaysian industries. Journal of intellectual capital, 1(1), 85-100.
    Bontis, N. (2001). Managing organizational knowledge by diagnosing intellectual capital: framing and advancing the state of the field Knowledge management and business model innovation (pp. 267-297): IGI Global.
    Bontis, N., Dragonetti, N. C., Jacobsen, K., & Roos, G. (1999). The knowledge toolbox:: A review of the tools available to measure and manage intangible resources. European management journal, 17(4), 391-402.
    Bristow, M. R., Saxon, L. A., Boehmer, J., Krueger, S., Kass, D. A., De Marco, T., . . . White, B. G. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. New England Journal of Medicine, 350(21), 2140-2150.
    Bueno, E., Paz Salmador, M., & Rodríguez, Ó. (2004). The role of social capital in today's economy: Empirical evidence and proposal of a new model of intellectual capital. Journal of intellectual capital, 5(4), 556-574.
    Byrne, B. M. (2013). Structural equation modeling with Mplus: Basic concepts, applications, and programming: Routledge.
    Cañibano, L., Garcia-Ayuso, M., & Sanchez, P. (2000). Accounting for intangibles: a literature review. Journal of Accounting literature, 19, 102-130.
    Chen, M.-C., Cheng, S.-J., & Hwang, Y. (2005). An empirical investigation of the relationship between intellectual capital and firms’ market value and financial performance. Journal of intellectual capital, 6(2), 159-176.
    Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
    DeCanio, S. J., Dibble, C., & Amir-Atefi, K. (2000). The importance of organizational structure for the adoption of innovations. Management science, 46(10), 1285-1299.
    Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: a predictive validity perspective. Journal of the academy of marketing science, 40(3), 434-449.
    Dicken, P. (2003). Global shift: Reshaping the global economic map in the 21st century: Sage.
    Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS quarterly, 39(2).
    Donaldson, T., & Preston, L. E. (1995). The stakeholder theory of the corporation: Concepts, evidence, and implications. Academy of management Review, 20(1), 65-91.
    Edvinsson, L., Malone, M., & Bonneville, C. (1999). Le capital immatériel de laentreprise: identification, mesure, management.
    Edvinsson, L., & Malone, M. S. (1997). Intellectual capital: The proven way to establish your company's real value by finding its hidden brainpower: Piatkus.
    Egbu, C. O. (2004). Managing knowledge and intellectual capital for improved organizational innovations in the construction industry: an examination of critical success factors. Engineering, Construction and Architectural Management, 11(5), 301-315.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
    Grasenick, K., & Low, J. (2004). Shaken, not stirred: defining and connecting indicators for the measurement and valuation of intangibles. Journal of intellectual capital, 5(2), 268-281.
    Green, A., & Ryan, J. J. (2005). A framework of intangible valuation areas (FIVA) Aligning business strategy and intangible assets. Journal of intellectual capital, 6(1), 43-52.
    Guthrie, J. (2001). The management, measurement and the reporting of intellectual capital. Journal of intellectual capital, 2(1), 27-41.
    Guthrie, J., Petty, R., Yongvanich, K., & Ricceri, F. (2004). Using content analysis as a research method to inquire into intellectual capital reporting. Journal of intellectual capital, 5(2), 282-293.
    Guthrie, J., Ricceri, F., & Dumay, J. (2012). Reflections and projections: a decade of intellectual capital accounting research. The british accounting review, 44(2), 68-82.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
    Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long range planning, 45(5-6), 320-340.
    Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the academy of marketing science, 40(3), 414-433.
    Henseler, J. (2017). Bridging design and behavioral research with variance-based structural equation modeling. Journal of advertising, 46(1), 178-192.
    Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management & data systems, 116(1), 2-20.
    Henseler, J., Hubona, G., & Ray, P. A. (2017). Partial Least Squares Path Modeling: Updated Guidelines. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 19-39): Springer.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43(1), 115-135.
    Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing New challenges to international marketing (pp. 277-319): Emerald Group Publishing Limited.
    Höök, K., & Löwgren, J. (2012). Strong concepts: Intermediate-level knowledge in interaction design research. ACM Transactions on Computer-Human Interaction (TOCHI), 19(3), 23.
    Huang, P., & Yao, C. (2018). Key success factors in high-tech industry promoting knowledge management. Journal of Interdisciplinary Mathematics, 21(2), 509-517.
    Inkinen, H. (2015). Review of empirical research on intellectual capital and firm performance. Journal of intellectual capital, 16(3), 518-565.
    Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (Vol. 5): Prentice hall Upper Saddle River, NJ.
    Jones, J., & Hunter, D. (1995). Consensus methods for medical and health services research. BMJ: British Medical Journal, 311(7001), 376.
    Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language: Scientific Software International.
    Juma, N., & McGee, J. (2006). The relationship between intellectual capital and new venture performance: An empirical investigation of the moderating role of the environment. International Journal of Innovation and Technology Management, 3(04), 379-405.
    Ketterlinus, R. D., Bookstein, F. L., Sampson, P. D., & Lamb, M. E. (1989). Partial least squares analysis in developmental psychopathology. Development and Psychopathology, 1(4), 351-371.
    Kujansivu, P., & Lönnqvist, A. (2009). Measuring the Impacts of an IC Development Service: the Case of the Pietari Business Campus. Electronic Journal of Knowledge Management, 7(4).
    Landis, R. S., Beal, D. J., & Tesluk, P. E. (2000). A comparison of approaches to forming composite measures in structural equation models. Organizational Research Methods, 3(2), 186-207.
    Lohmöller, J.-B. (2013). Latent variable path modeling with partial least squares: Springer Science & Business Media.
    Makarova, I., Pashkevich, A., & Shubenkova, K. (2018). Blended Learning Technologies in the Automotive Industry Specialists' Training. Paper presented at the 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA).
    Maraun, M. D., & Halpin, P. F. (2008). Manifest and latent variates.
    Marcoulides, G. A., & Saunders, C. (2006). Editor's comments: PLS: a silver bullet? MIS quarterly, iii-ix.
    McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31(2), 239-270.
    McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological methods, 7(1), 64.
    Megna, P., & Klock, M. (1993). The impact of intangible capital on Tobin's q in the semiconductor industry. The American Economic Review, 83(2), 265-269.
    Moon, Y. J., & Kym, H. G. (2006). A model for the value of intellectual capital. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'Administration, 23(3), 253-269.
    Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436.
    Najibullah, S. (2005). An empirical investigation of the relationship between intellectual capital and firms’ market value and financial performance: in context of commercial banks of Bangladesh. Independent University, Bangladesh.
    Petrash, G. (1996). Dow's journey to a knowledge value management culture. European management journal, 14(4), 365-373.
    Petty, R., & Guthrie, J. (2000). Intellectual capital literature review: measurement, reporting and management. Journal of intellectual capital, 1(2), 155-176.
    Petty, R., Ricceri, F., & Guthrie, J. (2008). Intellectual capital: a user's perspective. Management Research News, 31(6), 434-447.
    Pew Tan, H., Plowman, D., & Hancock, P. (2007). Intellectual capital and financial returns of companies. Journal of intellectual capital, 8(1), 76-95.
    Raymond, L., & St-Pierre, J. (2010). Strategic capabilities for product innovation in SMEs: A gestalts perspective. The International Journal of Entrepreneurship and Innovation, 11(3), 209-220.
    Reed, K. K. (2000). The dynamics of intellectual capital.
    Riahi-Belkaoui, A. (2003). Intellectual capital and firm performance of US multinational firms: a study of the resource-based and stakeholder views. Journal of intellectual capital, 4(2), 215-226.
    Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long range planning, 45(5-6), 341-358.
    Rigdon, E. E. (2014). Rethinking partial least squares path modeling: breaking chains and forging ahead. Long range planning, 47(3), 161-167.
    Rindskopf, D. (1984). Using phantom and imaginary latent variables to parameterize constraints in linear structural models. Psychometrika, 49(1), 37-47.
    Saaty, T., & Vargas, L. (2006). Decision making with the analytic network process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks. New York, NY, U.S.A.: Springer.
    Saaty, T. L. (1999, 12-14, August, 1999). Fundamentals of the analytic network process. Paper presented at the Proceedings of International Symposium on Analytical Hierarchy Process, Kobe, Japan.
    Sarstedt, M., Ringle, C. M., Henseler, J., & Hair, J. F. (2014). On the emancipation of PLS-SEM: A commentary on Rigdon (2012). Long range planning, 47(3), 154-160.
    Schuchard-Ficher, C., Backhaus, K., Humme, U., Lohrberg, W., & Plinke, W. (2013). Multivariate Analysemethoden: Eine anwendungsorientierte Einführung: Springer-Verlag.
    Shiau, S., Huang, C.-Y., Yang, C.-L., & Juang, J.-N. (2018). A derivation of factors influencing the innovation diffusion of the OpenStreetMap in STEM education. Sustainability, 10(10), 3447.
    Simmie, J. (2003). Innovation and urban regions as national and international nodes for the transfer and sharing of knowledge. Regional studies, 37(6-7), 607-620.
    Sofian, S., Tayles, M., & Pike, R. (2006). The implications of intellectual capital on performance measurement and corporate performance. Jurnal kemanusiaan, 4(2).
    St-Pierre, J., & Audet, J. (2011). Intangible assets and performance: Analysis on manufacturing SMEs. Journal of intellectual capital, 12(2), 202-223.
    Stewart, B. F., Siscovick, D., Lind, B. K., Gardin, J. M., Gottdiener, J. S., Smith, V. E., . . . Otto, C. M. (1997). Clinical factors associated with calcific aortic valve disease. Journal of the American College of Cardiology, 29(3), 630-634.
    Thomas, S.A. (1991). BrainPower. How Intellectual Capital is Becoming America’s Most Value Asset: Fortune 5, 44-60.
    Subramaniam, M., & Youndt, M. A. (2005). The influence of intellectual capital on the types of innovative capabilities. Academy of Management journal, 48(3), 450-463.
    Sveiby, K. E. (1997). The new organizational wealth: Managing & measuring knowledge-based assets: Berrett-Koehler Publishers.
    Tenenhaus, M. (2008). Component-based structural equation modelling. Total quality management, 19(7-8), 871-886.
    Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159-190. doi:10.1007/s10479-010-0829-4
    Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2010). Handbook of partial least squares (Vol. 201): Springer.
    Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’ technology readiness on technology acceptance. Information & Management, 44(2), 206-215.
    Wechsung, I. (2014). An evaluation framework for multimodal interaction. T-Labs Series in Telecommunication Services. Cham: Springer International. doi, 10, 978-973.
    Wold, H. (1982). Soft modeling: The basic design and some extensions, systems under indirect observations. Causality. Structure. Prediction. Ed. KG Joreskog. H. Wold. Amsterdam: North Holland Publishing Company.
    Yang, C.-L., Huang, C.-Y., Kao, Y.-S., & Tasi, Y.-L. (2017). Disaster Recovery Site Evaluations and Selections for Information Systems of Academic Big Data. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 4553-4589.
    Yang, C.-L., Yuan, B. J., & Huang, C.-Y. (2015). Key determinant derivations for information technology disaster recovery site selection by the multi-criterion decision making method. Sustainability, 7(5), 6149-6188.

    無法下載圖示 本全文未授權公開
    QR CODE