Basic Search / Detailed Display

Author: 許科銳
Simbulan, Kristan Bryan
Thesis Title: 二維半導體過渡金屬二硫屬化物:光-物質相互作用和光器件應用
Two-Dimensional Semiconducting Transition Metal Dichalcogenides: Light-Matter Interaction and Photodevice Application
Advisor: 藍彥文
Lan, Yann-Wen
Committee: 鄭舜仁 林文欽 陸亭樺 游至仕 謝雅萍 陳劭宇 藍彥文
Approval Date: 2021/12/02
Degree: 博士
Doctor
Department: 物理學系
Department of Physics
Thesis Publication Year: 2021
Academic Year: 110
Language: 英文
Number of pages: 92
Keywords (in English): two-dimensional material, twisted light, molybdenum disulfide, orbital angular momentum, transition metal dichalcogenides
Research Methods: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200010
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 162Downloads: 15
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • The search for new materials to replace silicon has taken place, and among the favored candidates are the atomically thin two-dimensional (2D) materials that can easily isolate due to their weak interlayer van der Waals forces. A popular example of these materials is the 2D semiconducting transition metal dichalcogenides (TMDs). The single-layer form of 2D TMDs exhibits direct bandgap, high photoluminescence (PL) quantum efficiency, high exciton oscillator strength, and spin-valley coupling-related properties, making them an excellent platform to investigate interesting optical properties. To date, there are only a handful of researchers who are focusing on the effects of light with orbital angular momentum (OAM) and, to some extent, spin angular momentum (SAM) on the optical and electrical properties of 2D TMDs. Hence, this work takes the opportunity to do further experimental investigation and describe the initially unexplored phenomena arising from this light-matter interaction. In this study, monolayer (ML) molybdenum disulfide (MoS2) – a prototypical 2D TMD – was subjected to interaction with incident light having distinct properties. Consequently, it was observed that an incident elliptically polarized light had induced breaking of the symmetry between the x- and y-components of the in-plane Raman mode (E_2g) intensity, while an impinging light with OAM had caused a selective photoexcitation of the exciton quasiparticles manifested by the blue peak energy shifts of the recorded PL intensity. The effects of light with OAM were further investigated and found to have controlled the photovoltaic properties of a MoS2-channeled photodevice. Such observations imply that light with certain properties may facilitate onto the ML MoS2 additional degrees of freedom useful for data storage, enhanced energy harvesting, and sensing applications.

    Acknowledgements i Abstract ii List of Tables iii List of Figures iv Chapter 1: Introduction 1 1.1. Purposes of the study 1 1.2. Dissertation Roadmap 2 1.3. Background 2 1.3.1. Brief history of two-dimensional transition metal dichalcogenides (2D-TMDs)3 1.3.2. Properties of semiconducting 2D-TMDs 4 1.3.2.1. Electrical and Optical Properties 5 1.3.2.2. Mechanical Properties 7 1.3.3. Growth/synthesis of 2D-TMDs 8 1.3.3.1. Mechanical cleavage 8 1.3.3.2. Liquid exfoliation 9 1.3.3.3. Chemical vapor deposition 9 1.3.3.4. Physical vapor deposition 10 1.3.4. Light-induced quasiparticles 11 1.3.5. Light with spin and orbital angular momentum, and their interaction with TMD materials 12 Chapter 2: A standard method to reliably fabricate two-dimensional devices 15 2.1. Introduction 15 2.2. Fabrication process flow 16 2.3. Critical points of the process flow 25 Chapter 3: The symmetry breaking of the in-plane (E12g) Raman mode of molybdenum disulfide by elliptically polarized light 28 3.1. Introduction 28 3.2. The theoretical background and experimental setup 29 3.3. Experimental results and analyses 33 3.4. Conclusion 37 Chapter 4: Selective excitation of excitons in single-layer molybdenum disulfide by twisted light 38 4.1. Introduction 38 4.2. Experimental setup and the characterization of the sample 40 4.3. Experimental results and analyses 42 4.4. Conclusion 54 Chapter 5: Enhanced photovoltaic effect in MoS2 device by twisted light 55 5.1. Introduction 55 5.2. Characteristics of the device and the experimental setup 57 5.3. Experimental results and analyses 60 5.4. Conclusion 65 Chapter 6: Conclusion and future work 66 6.1. Conclusion 66 6.2. Future work 67 Bibliography 68 Appendix 75 A. Theory of exciton in 2D materials, the orbital angular momentum of light, and the interaction of the LG beam and exciton 75 B. Estimating the absorption efficiency 90 C. Published articles 92

    [1] D. Xiao, G. Bin Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. (2012).
    [2] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Nat. Commun. 3, 887 (2012).
    [3] S. Ishii, N. Yokoshi, and H. Ishihara, J. Phys. Conf. Ser. 1220, 012056 (2019).
    [4] M. Sharon, History of Nanotechnology (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2019).
    [5] W. Koehler, US1714564A (1929).
    [6] M. R. Vazirisereshk, A. Martini, D. A. Strubbe, and M. Z. Baykara, Lubricants 7, 57 (2019).
    [7] R. F. Frindt and A. D. Yoffe, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 273, 69 (1963).
    [8] R. F. Frindt, Phys. Rev. 140, A536 (1965).
    [9] R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 444 (1992).
    [10] Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, Science. 267, 222 (1995).
    [11] P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).
    [12] K. S. Novoselov, Science. 306, 666 (2004).
    [13] S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Annu. Rev. Mater. Res. 45, 1 (2015).
    [14] A. V. Kolobov and J. Tominaga, MRS Bull. 42, 471 (2017).
    [15] M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, and A. Z. Moshfegh, Nanoscale Horizons 3, 90 (2018).
    [16] J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, and K. Banerjee, in Micro- Nanotechnol. Sensors, Syst. Appl. VI, edited by T. George, M. S. Islam, and A. K. Dutta (2014), p. 908305.
    [17] L. Yang, C. Xie, J. Jin, R. Ali, C. Feng, P. Liu, and B. Xiang, Nanomaterials 8, 463 (2018).
    [18] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, Acc. Chem. Res. 48, 56 (2015).
    [19] Q. Tang and D. Jiang, Chem. Mater. 27, 3743 (2015).
    [20] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
    [21] B. T. Zhou, N. F. Q. Yuan, H.-L. Jiang, and K. T. Law, Phys. Rev. B 93, 180501 (2016).
    [22] K. Dou, Y. Ma, R. Peng, W. Du, B. Huang, and Y. Dai, Appl. Phys. Lett. 117, 172405 (2020).
    [23] B. Zhu, H. Zeng, J. Dai, Z. Gong, and X. Cui, Proc. Natl. Acad. Sci. 111, 11606 (2014).
    [24] G. Casillas, U. Santiago, H. Barrón, D. Alducin, A. Ponce, and M. José-Yacamán, J. Phys. Chem. C 119, 710 (2015).
    [25] A. Falin, M. Holwill, H. Lv, W. Gan, J. Cheng, R. Zhang, D. Qian, M. R. Barnett, E. J. G. Santos, K. S. Novoselov, T. Tao, X. Wu, and L. H. Li, ACS Nano 15, 2600 (2021).
    [26] S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).
    [27] K. He, C. Poole, K. F. Mak, and J. Shan, Nano Lett. 13, 2931 (2013).
    [28] R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, ACS Nano 8, 986 (2014).
    [29] J. Pető, G. Dobrik, G. Kukucska, P. Vancsó, A. A. Koós, J. Koltai, P. Nemes-Incze, C. Hwang, and L. Tapasztó, Npj 2D Mater. Appl. 3, 39 (2019).
    [30] R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Pérez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez, Chem. Soc. Rev. 47, 53 (2018).
    [31] C. Murugan, V. Sharma, R. K. Murugan, G. Malaimegu, and A. Sundaramurthy, J. Control. Release 299, 1 (2019).
    [32] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science. 331, 568 (2011).
    [33] J. You, M. D. Hossain, and Z. Luo, Nano Converg. 5, 26 (2018).
    [34] J. Yue, J. Jian, P. Dong, L. Luo, and F. Chang, IOP Conf. Ser. Mater. Sci. Eng. 592, 012044 (2019).
    [35] S. Golovynskyi, O. I. Datsenko, D. Dong, Y. Lin, I. Irfan, B. Li, D. Lin, and J. Qu, J. Phys. Chem. C 125, 17806 (2021).
    [36] J. Xiao, M. Zhao, Y. Wang, and X. Zhang, Nanophotonics 6, 1309 (2017).
    [37] I. Kylänpää and H.-P. Komsa, Phys. Rev. B 92, 205418 (2015).
    [38] M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
    [39] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012).
    [40] M. Eginligil, B. Cao, Z. Wang, X. Shen, C. Cong, J. Shang, C. Soci, and T. Yu, Nat. Commun. 6, 7636 (2015).
    [41] M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).
    [42] S. H. Simpson and S. Hanna, in Opt. InfoBase Conf. Pap. (2009).
    [43] C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, Nat. Commun. 7, 12998 (2016).
    [44] S. Franke-Arnold, Philos. Trans. R. Soc. A 375, 20150435 (2017).
    [45] Y.-B. Kim, Trans. Electr. Electron. Mater. 11, 93 (2010).
    [46] M. M. Waldrop, Nature 530, 144 (2016).
    [47] Y. W. Lan, W. H. Chang, S. J. Lai, Y. C. Chang, C. S. Wu, C. H. Kuan, C. S. Chang, and C. D. Chen, Carbon N. Y. 50, 4619 (2012).
    [48] Y. W. Lan, K. Aravind, C. S. Wu, C. H. Kuan, K. S. Chang-Liao, and C. D. Chen, Carbon N. Y. 50, 3748 (2012).
    [49] Y. W. Lan, L. N. Nguyen, S. J. Lai, M. C. Lin, C. H. Kuan, and C. D. Chen, Appl. Phys. Lett. 99, (2011).
    [50] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and a J. Hart, Science 339, 535 (2013).
    [51] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S. W. Joo, Nanoscale Res. Lett. 9, 1 (2014).
    [52] Y. W. Lan, W. H. Chang, B. T. Xiao, B. W. Liang, J. H. Chen, P. H. Jiang, L. J. Li, Y. W. Su, Y. L. Zhong, and C. D. Chen, Small 10, 4778 (2014).
    [53] M. F. Romero, A. Bosca, J. Pedros, J. Martinez, R. Fandan, T. Palacios, and F. Calle, IEEE Electron Device Lett. 38, 1441 (2017).
    [54] B. M. Blaschke, N. Tort-Colet, A. Guimerà-Brunet, J. Weinert, L. Rousseau, A. Heimann, S. Drieschner, O. Kempski, R. Villa, M. V. Sanchez-Vives, and J. A. Garrido, 2D Mater. 4, 025040 (2017).
    [55] Z. Zhu, I. Murtaza, H. Meng, and W. Huang, RSC Adv. 7, 17387 (2017).
    [56] S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Annu. Rev. Mater. Res. 45, 63 (2015).
    [57] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, (2017).
    [58] A. V. Kolobov and J. Tominaga, in Springer Ser. Mater. Sci. (2016), pp. 473–512.
    [59] L. N. Nguyen, Y. W. Lan, J. H. Chen, T. R. Chang, Y. L. Zhong, H. T. Jeng, L. J. Li, and C. D. Chen, Nano Lett. 14, 2381 (2014).
    [60] C. M. Torres, Y. W. Lan, C. Zeng, J. H. Chen, X. Kou, A. Navabi, J. Tang, M. Montazeri, J. R. Adleman, M. B. Lerner, Y. L. Zhong, L. J. Li, C. D. Chen, and K. L. Wang, Nano Lett. 15, 7905 (2015).
    [61] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8, 1102 (2014).
    [62] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Mater. Today 20, 116 (2017).
    [63] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Second Edition (Society of Photo-Optical Instrumentation Engineers, 2012).
    [64] K. B. C. Simbulan, P.-C. Chen, Y.-Y. Lin, and Y.-W. Lan, J. Vis. Exp. (2018).
    [65] C. Y. Lin, X. Zhu, S. H. Tsai, S. P. Tsai, S. Lei, Y. Shi, L. J. Li, S. J. Huang, W. F. Wu, W. K. Yeh, Y. K. Su, K. L. Wang, and Y. W. Lan, ACS Nano 11, 11015 (2017).
    [66] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and Eklund, Nano Lett. 6, 2667 (2006).
    [67] A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2111 (1985).
    [68] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).
    [69] A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, Sci. Rep. 3, 1755 (2013).
    [70] C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. F. Dresselhaus, and M. S. Dresselhaus, ACS Nano 5, 8760 (2011).
    [71] T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 (2009).
    [72] Y. Wang, Z. Wang, W. Yao, G.-B. Liu, and H. Yu, Phys. Rev. B 95, 115429 (2017).
    [73] L. Ding, M. S. Ukhtary, M. Chubarov, T. H. Choudhury, F. Zhang, R. Yang, A. Zhang, J. A. Fan, M. Terrones, J. M. Redwing, T. Yang, M. Li, R. Saito, and S. Huang, IEEE Trans. Electron Devices 65, 4059 (2018).
    [74] A. A. Puretzky, L. Liang, X. Li, K. Xiao, B. G. Sumpter, V. Meunier, and D. B. Geohegan, ACS Nano 10, 2736 (2016).
    [75] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, Chem. Soc. Rev. 44, 2757 (2015).
    [76] S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, Nano Lett. 15, 2526 (2015).
    [77] T.-D. Huang, K. B. Simbulan, Y.-F. Chiang, Y.-W. Lan, and T.-H. Lu, Phys. Rev. B 100, 195414 (2019).
    [78] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [79] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Light Sci. Appl. 8, 90 (2019).
    [80] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Science. 340, 1545 (2013).
    [81] L. Paterson, Science. 292, 912 (2001).
    [82] A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, Nat. Photonics 8, 234 (2014).
    [83] T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, Science. 361, 1101 (2018).
    [84] D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, Phys. Rev. Lett. 114, 050502 (2015).
    [85] D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, Light Sci. Appl. 5, e16157 (2016).
    [86] S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
    [87] L. Torner, J. P. Torres, and S. Carrasco, Opt. Express 13, 873 (2005).
    [88] W. Brullot, M. K. Vanbel, T. Swusten, and T. Verbiest, Sci. Adv. 2, e1501349 (2016).
    [89] X. Zhuang, Science. 305, 188 (2004).
    [90] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
    [91] K. Volke-Sepúlveda, S. Chávez-Cerda, V. Garcés-Chávez, and K. Dholakia, J. Opt. Soc. Am. B 21, 1749 (2004).
    [92] D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, Nat. Commun. 4, 2527 (2013).
    [93] L. A. Sordillo, S. Mamani, M. Sharonov, and R. R. Alfano, Appl. Phys. Lett. 114, 041104 (2019).
    [94] C. Jin, E. C. Regan, D. Wang, M. Iqbal Bakti Utama, C.-S. Yang, J. Cain, Y. Qin, Y. Shen, Z. Zheng, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, Nat. Phys. 15, 1140 (2019).
    [95] M.-S. Kwon, B. Y. Oh, S.-H. Gong, J.-H. Kim, H. K. Kang, S. Kang, J. D. Song, H. Choi, and Y.-H. Cho, Phys. Rev. Lett. 122, 045302 (2019).
    [96] M. B. Farías, G. F. Quinteiro, and P. I. Tamborenea, Eur. Phys. J. B 86, 432 (2013).
    [97] H. Yu, G.-B. Liu, P. Gong, X. Xu, and W. Yao, Nat. Commun. 5, 3876 (2014).
    [98] D. Y. Qiu, T. Cao, and S. G. Louie, Phys. Rev. Lett. 115, 176801 (2015).
    [99] G.-H. Peng, P.-Y. Lo, W.-H. Li, Y.-C. Huang, Y.-H. Chen, C.-H. Lee, C.-K. Yang, and S.-J. Cheng, Nano Lett. 19, 2299 (2019).
    [100] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 21001 (2018).
    [101] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012).
    [102] M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, Phys. Status Solidi 252, 2349 (2015).
    [103] T. Yu and M. W. Wu, Phys. Rev. B 89, 205303 (2014).
    [104] K. Hao, G. Moody, F. Wu, C. K. Dass, L. Xu, C.-H. Chen, L. Sun, M.-Y. Li, L.-J. Li, A. H. MacDonald, and X. Li, Nat. Phys. 12, 677 (2016).
    [105] Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Nature 513, 214 (2014).
    [106] K. B. Simbulan, T.-D. Huang, G.-H. Peng, F. Li, O. J. Gomez Sanchez, J.-D. Lin, C.-I. Lu, C.-S. Yang, J. Qi, S.-J. Cheng, T.-H. Lu, and Y.-W. Lan, ACS Nano 15, 3481 (2021).
    [107] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, ACS Nano 7, 8963 (2013).
    [108] P. Yan, J. Wang, G. Yang, N. Lu, G. Chu, X. Zhang, and X. Shen, Superlattices Microstruct. 120, 235 (2018).
    [109] D. Wu, H. Huang, X. Zhu, Y. He, Q. Xie, X. Chen, X. Zheng, H. Duan, and Y. Gao, Crystals 6, 151 (2016).
    [110] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, 2nd Editio (Cambridge University Press, 2018).
    [111] T. Yu and M. W. Wu, Phys. Rev. B 93, 045414 (2016).
    [112] M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, Phys. Rev. B 89, 201302 (2014).
    [113] S. Dal Conte, F. Bottegoni, E. A. A. Pogna, D. De Fazio, S. Ambrogio, I. Bargigia, C. D’Andrea, A. Lombardo, M. Bruna, F. Ciccacci, A. C. Ferrari, G. Cerullo, and M. Finazzi, Phys. Rev. B 92, 235425 (2015).
    [114] T. Yan, X. Qiao, P. Tan, and X. Zhang, Sci. Rep. 5, 15625 (2015).
    [115] M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, Nanophotonics 6, 1289 (2017).
    [116] H. Tornatzky, A.-M. Kaulitz, and J. Maultzsch, Phys. Rev. Lett. 121, 167401 (2018).
    [117] L. Guo, M. Wu, T. Cao, D. M. Monahan, Y.-H. Lee, S. G. Louie, and G. R. Fleming, Nat. Phys. 15, 228 (2019).
    [118] L. C. D. Romero, D. L. Andrews, and M. Babiker, J. Opt. B Quantum Semiclassical Opt. 4, S66 (2002).
    [119] A. Picón, A. Benseny, J. Mompart, J. R. Vázquez de Aldana, L. Plaja, G. F. Calvo, and L. Roso, New J. Phys. 12, 083053 (2010).
    [120] M. Kira and S. W. Koch, Semiconductor Quantum Optics (Cambridge University Press, Cambridge; New York, 2012).
    [121] Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, Phys. Rev. B 90, 205422 (2014).
    [122] M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, Phys. Rev. Lett. 89, 143601 (2002).
    [123] C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, Appl. Phys. Lett. 104, 103114 (2014).
    [124] H. Zhang, Y. Ma, Y. Wan, X. Rong, Z. Xie, W. Wang, and L. Dai, Sci. Rep. 5, 8440 (2015).
    [125] E. L. Ivtchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, Harrow, U.K., 2005).
    [126] B. K. Choi, M. Kim, K.-H. Jung, J. Kim, K.-S. Yu, and Y. J. Chang, Nanoscale Res. Lett. 12, 492 (2017).
    [127] J. W. Christopher, B. B. Goldberg, and A. K. Swan, Sci. Rep. 7, 14062 (2017).
    [128] T. Han, H. Liu, S. Wang, S. Chen, W. Li, X. Yang, M. Cai, and K. Yang, Nanomaterials 9, 740 (2019).
    [129] F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, Phys. Rev. X 7, 021026 (2017).
    [130] T. Olsen, S. Latini, F. Rasmussen, and K. S. Thygesen, Phys. Rev. Lett. 116, 056401 (2016).
    [131] A. Steinhoff, M. Florian, M. Rösner, G. Schönhoff, T. O. Wehling, and F. Jahnke, Nat. Commun. 8, 1166 (2017).
    [132] H. R. Philipp, J. Appl. Phys. 50, 1053 (1979).
    [133] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching, Phys. Rev. A 43, 1186 (1991).
    [134] M. Rösner, E. Şaşıoğlu, C. Friedrich, S. Blügel, and T. O. Wehling, Phys. Rev. B 92, 085102 (2015).
    [135] R. Geick, C. H. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966).
    [136] G. Molina-Terriza, J. P. Torres, and L. Torner, Nat. Phys. 3, 305 (2007).
    [137] J. F. Geisz, M. A. Steiner, N. Jain, K. L. Schulte, R. M. France, W. E. McMahon, E. E. Perl, and D. J. Friedman, IEEE J. Photovoltaics 8, 626 (2018).
    [138] M. Gul, Y. Kotak, and T. Muneer, Energy Explor. Exploit. 34, 485 (2016).
    [139] B. I. Zakharchenya, V. G. Fleishe, R. I. Dzhioev, Y. P. Veshchunov, and I. B. Rusanov, JETP Lett. 13, 195 (1971).
    [140] Ekimov A.I. and Safarov V.I., JETP Lett 12, 1 (1970).
    [141] R. Fickler, G. Campbell, B. Buchler, P. K. Lam, and A. Zeilinger, Proc. Natl. Acad. Sci. 113, 13642 (2016).
    [142] M. Babiker, D. L. Andrews, and V. E. Lembessis, J. Opt. 21, 013001 (2019).
    [143] K. A. Forbes and D. L. Andrews, J. Phys. Photonics 3, 022007 (2021).
    [144] T. Arikawa, T. Hiraoka, S. Morimoto, F. Blanchard, S. Tani, T. Tanaka, K. Sakai, H. Kitajima, K. Sasaki, and K. Tanaka, Sci. Adv. 6, eaay1977 (2020).
    [145] Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, and R. Agarwal, Science. 368, 763 (2020).
    [146] M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, and J.-H. He, ACS Nano 8, 8317 (2014).
    [147] L. Z. Hao, W. Gao, Y. J. Liu, Z. D. Han, Q. Z. Xue, W. Y. Guo, J. Zhu, and Y. R. Li, Nanoscale 7, 8304 (2015).
    [148] E. Singh, K. S. Kim, G. Y. Yeom, and H. S. Nalwa, ACS Appl. Mater. Interfaces 9, 3223 (2017).
    [149] Z.-Q. Xu, Y. Zhang, Z. Wang, Y. Shen, W. Huang, X. Xia, W. Yu, Y. Xue, L. Sun, C. Zheng, Y. Lu, L. Liao, and Q. Bao, 2D Mater. 3, 041001 (2016).
    [150] A. Pospischil, M. M. Furchi, and T. Mueller, Nat. Nanotechnol. 9, 257 (2014).
    [151] M. S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi, and W. J. Yoo, ACS Nano 8, 9332 (2014).
    [152] X. Zhong, W. Zhou, Y. Peng, Y. Zhou, F. Zhou, Y. Yin, and D. Tang, RSC Adv. 5, 45239 (2015).
    [153] X. Liu, Y. Chen, D. Li, S.-W. Wang, C.-C. Ting, L. Chen, K.-W. Ang, C.-W. Qiu, Y.-L. Chueh, X. Sun, and H.-C. Kuo, Photonics Res. 7, 311 (2019).
    [154] J. Y. Kwak, Results Phys. 13, 102202 (2019).
    [155] K. Rajkanan, R. Singh, and J. Shewchun, Solid. State. Electron. 22, 793 (1979).
    [156] J.-T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, J. Appl. Phys. 115, 193511 (2014).
    [157] L. Long, Y. Yang, H. Ye, and L. Wang, J. Quant. Spectrosc. Radiat. Transf. 200, 198 (2017).
    [158] K. Zhou, J. Song, L. Lu, Z. Luo, and Q. Cheng, Opt. Express 27, 2305 (2019).
    [159] S. M. Bahauddin, H. Robatjazi, and I. Thomann, ACS Photonics 3, 853 (2016).
    [160] X. Zheng, A. Calò, T. Cao, X. Liu, Z. Huang, P. M. Das, M. Drndic, E. Albisetti, F. Lavini, T.-D. Li, V. Narang, W. P. King, J. W. Harrold, M. Vittadello, C. Aruta, D. Shahrjerdi, and E. Riedo, Nat. Commun. 11, 3463 (2020).
    [161] A. Zafar, H. Nan, Z. Zafar, Z. Wu, J. Jiang, Y. You, and Z. Ni, Nano Res. 10, 1608 (2017).
    [162] S. Golovynskyi, I. Irfan, M. Bosi, L. Seravalli, O. I. Datsenko, I. Golovynska, B. Li, D. Lin, and J. Qu, Appl. Surf. Sci. 515, 146033 (2020).
    [163] K. B. Simbulan, Y.-J. Feng, W.-H. Chang, C.-I. Lu, T.-H. Lu, and Y.-W. Lan, ACS Nano 15, 14822 (2021).
    [164] Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S.-L. Zhang, R. Liu, and Z.-J. Qiu, Sci. Rep. 5, 7938 (2015).
    [165] Z. Li, J. Chen, R. Dhall, and S. B. Cronin, 2D Mater. 4, 015004 (2016).
    [166] R. A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).
    [167] J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, and Z. Zhang, Nat. Commun. 6, 6293 (2015).
    [168] W. H. Chae, J. D. Cain, E. D. Hanson, A. A. Murthy, and V. P. Dravid, Appl. Phys. Lett. 111, 143106 (2017).
    [169] C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, and L. J. Lauhon, J. Phys. Chem. Lett. 4, 2508 (2013).
    [170] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Nano Lett. 14, 6165 (2014).
    [171] X. Fang, Q. Tian, G. Yang, Y. Gu, F. Wang, B. Hua, and X. Yan, Opt. Quantum Electron. 51, 21 (2019).
    [172] Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, Opt. Mater. Express 7, 100 (2017).
    [173] K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, Opt. Express 26, 1351 (2018).
    [174] S. Mei, M. Q. Mehmood, K. Huang, and C.-W. Qiu, in Metamaterials, Metadevices, Metasystems 2015, edited by N. Engheta, M. A. Noginov, and N. I. Zheludev (2015), p. 95441J.

    下載圖示
    QR CODE