簡易檢索 / 詳目顯示

研究生: 游森棚
Sen-Peng Eu
論文名稱: 關於二次代數生成函數及組合結構
On the Quadratic Generating Functions And Combinatorial Structures
指導教授: 葉永南
Yeh, Yeong-Nan
施茂祥
Shih, Mau-Hsiang
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 165
中文關鍵詞: 生成函數組合結構對應Dyck路徑根樹
英文關鍵詞: generating function, combinatorial structure, bijection, Dyck path, rooted tree
論文種類: 學術論文
相關次數: 點閱:433下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文討論了二次代數生成函數 (quadratic generating function) 及相關的組合結構,並得出一些這個領域上的新結果。第二章整理了具有二次代數生成函數的特殊二次組合數及組合結構。第三章提出處理二次代數生成函數的Taylor 展開式法,據此解決Motzkin path with flaws的計數問題。第四章中證明,由一個二次代數生成函數可誘導出一對滿足二次三項遞迴式的多項式族。第五章解決Schröder path with flaws的計數。第六章解決了任意給定山峰高度的Dyck路徑的計數問題,並引進等價類的概念。第七章利用對應方法給出了關於根樹以及網著色的組合證明。第八章解決非自交非孤立點分割的區塊計數。

    I Quadratic Generating Functions 1 BasicFacts 1.1 Definitions 1.2 On Coeffcient Extraction 2 Special Quadratic Numbers 2.1 Catalan Numbers 2.2 Motzkin Numbers 2.3 Fine Numbers 2.4 Riordan Numbers 2.5 Large Schr¨oder Numbers 2.6 Small Schr¨oder Numbers 2.7 Central Delannoy Numbers 2.8 Central Binomial Numbers 2.9 Other Quadratic Numbers II Results for Quadratic Generating Functions 3 Taylor Expansion of Catalan/Motzkin Numbers 3.1 Introduction . 3.2 Catalan Taylor-expansions 3.3 Motzkin Taylor-expansion 3.4 Dyck Path with Flaws and The Chung-Feller Theorem 3.5 Motzkin Path with Flaws 4 An Expansion and Induced Pair of Polynomials 4.1 Main Results 4.2 Four Classic Quadratic Numbers 4.2.1 Catalan Numbers 4.2.2 Motzkin Numbers 4.2.3 Large Schr¨oder Numbers 4.2.4 Small Schr¨oder Numbers 5 Enumeration of Schr¨oder Paths with Flaws 5.1 Schr¨oder Numbers, Large and Small 5.2 Taylor Expansion for Large Sch¨oder Numbers 5.3 Enumeration of Schr¨oder Paths with Flaws 6 Dyck Paths with Given Peak Heights 6.1 Introduction 6.2 Dyck Paths without Odd/Even Peaks 6.3 Dyck Paths With Peaks Avoiding/Restricted to Any Set 6.4 Equivalent Classes of Avoiding or Restricted Sets 7 Odd Degree and Odd Out Degree of a Tree 7.1 Introduction 7.2 Odd Degree and Odd Outdegree 7.3 Odd Leaves and Even Leaves 8 Visible Blocks in NSNC Partitions 8.1 Introduction 8.2 Visible Block in The Linear Representation 8.3 Visible Blocks in Circular Representation

    [1] M. Aigner, Motzkin numbers, European J. Combin. 19 (1999), 663-675.
    [2] D. Arques and A. Giorgetti, Une bijection geometrique entre une famille d’hypercartes et une famille de polygones enumerees par la serie de Schroder, Discrete Math. 217 (2000), 17–32.
    [3] M.D. Atkinson and J.R. Sack, Generating binary trees at random, Inform.
    Process. Lett. 41 (1992), 21–23.
    [4] C. Banderier and S. Schwer, Why Delannoy’s numbers? preprint.
    [5] E. Barcucci, A. Del Lungo, J.M. F´edou and R. Pinzani, Steep polyominos, q-Motzkin numbers and q-Bessel functions, Discrete Math. 189 (1998), 21-42
    [6] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Some combinatorial interpretations of q-analogs of Schroder numbers. Ann. Comb. 3 (1999), no. 2-4, 171–190.
    [7] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, From Motzkin to Catalan permutations, Discrete Math. 217, (2000) 33-49.
    [8] E. Barcucci; E. Pergola; R. Pinzani and S. Rinaldi, ECO-systems for Dyck and Schr¨oder paths, Pure Math. Appl. 11 (2000), 401–407.
    [9] D. Beckwith, Legendre polynomials and polygon dissections, Amer. Math. Monthly 105 (1998), 256–257.
    [10] F.R. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math. 204 (1999), 73–112.
    [11] J. Bonin, L. Shapiro and R. Simion, Some q-analogues of the Schr¨oder number arising from combinatorial statistics on lattice paths, J. Statist. Plann. Inference 34 (1993), 35–55.
    [12] A. Brousseau, Fibonacci and related number theoretic tables, Fibonacci Association, San Jose, CA, 1972.
    [13] E.C. Catalan, Note sur une equation aux differences finies, J. Math. Pures Appl. 3(1838), 508-515.
    [14] T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, Discrete Math. 204 (1999), 119–128.
    [15] W.C. Chu, On the lattice path method in convolution-type combinatorial identities. II. The weighted counting function method on lattice paths. Appl. Math. Mech. 10 (1989), 1131–1135.
    [16] K.L. Chung and W. Feller, On fluctuations in coin-tossing, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 605–608.
    [17] H. Delannoy, Emploi de l’´echiquier pour la r´esolution de divers probl´emes de probabilit´e. Assoc. Franc. Paris XVIII (1889), 43-52.
    [18] E. Deustch, A Bijection on Dyck paths and its consequences, Discrete Math. 179 (1998), 253–256.
    [19] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999), 167–202.
    [20] E. Deutsch, An involution on Dyck paths and its consequences, Discrete Math. 204 (1999), 163–166.
    [21] E. Deutsch, Problem 10816, Amer. Math. Monthly 107 (2000), 652.
    [22] E. Deutsch, A bijection on ordered trees and its consequences, J. Combin. Theory Ser. A 90 (2000), 210–215.
    [23] E. Deutsch and M. Noy, New statistics on non-crossing trees, Formal Power Series and Algebraic Combinatorics (2000), 667-676.
    [24] E. Deutsch, A bijective proof of the equation linking the Schr¨oder numbers, large and small, Discrete Math. 241 (2001), 235–240.
    [25] E. Deutsch and L. Shapiro, A survey of Fine numbers, Discrete Math. 241 (2001), 241–265.
    [26] E. Deutsch and L. Shapiro, seventeen Catalan identities, Bulletin of the ICA 31 (2001), 31–38.
    [27] E. Deutsch and L. Shapiro, A bijection between ordered trees and 2-Motzkin paths and its many consequences, Discrete Math. 256 (2002), 655–670.
    [28] R. Donaghey, Restrited plan tree representations of four Motzkin-Catalan equations, J. Combin. Theory Ser. B 22 (1977), 114–121.
    [29] R. Donaghey and L.W. Shapiro, Motzkin numbers, J. Combin. Theory Ser. A 23 (1977), 291–301.
    [30] R. Ehrenborg and M. Mendez, Schr¨oder parenthesizations and chordates. J. Combin. Theory Ser. A 67 (1994), 127–139.
    [31] A. Ehrenfeucht, T. Harju, P. ten Pas and G. Rozenberg, Permutations, parenthesis words, and Schr¨oder numbers. Discrete Math. 190 (1998), 259–264.
    [32] A. Eremenko and A. Gabrielov, The Wronski map and real
    Schubert calculus, preprint, http://www.math.purdue.edu/ eremenko/newprep.html.
    [33] S.P. Eu, S.C. Liu and Y.N. Yeh, Taylor expansion of Catalan and Motzkin numbers, Adv. in Appl. Math., 29 (2002), 345–357.
    [34] S.P. Eu, S.C. Liu and Y.N. Yeh, Odd or even on plane trees, Discrete Math., to appear.
    [35] S.P. Eu, S.C. Liu and Y.N. Yeh, Dyck paths with peaks avoiding or restricted to a given set, Studies in Appl. Math., submitted.
    [36] S.P. Eu and Y.N. Yeh, An expansion and induced polynomials of quadratic generating functions, In preparation.
    [37] S.P. Eu, A note on the polygon dissection, In preparation.
    [38] S.P. Eu, S.C. Liu and Y.N. Yeh, On the net-coloring problem, In preparation.
    [39] S.P. Eu and Y.N. Yeh, The enumeration of Schr¨oder paths with flaws, preprint.
    [40] S.P. Eu, Riordan structures, in preparation.
    [41] S.P. Eu and Y.N. Yeh, A curious determinant, preprint.
    [42] L. Euler, Summarium, Novi Commentarii Academiae scientiarum
    Petropolitanae 7 (1758/59), 13-15.
    [43] T. Fine, Extrapolation when very little is known about the source, Inform. and Contral 16 (1970), 331-359.
    [44] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980), 125-161.
    [45] P. Flajolet and R. Sedgewick, The average case analysis of algorithms,INRIA Research Reports 2026, 1993.
    [46] P. Flajolet, R. Sedgewick, An Introduction to the Analysis of Algoritheorems, Addison-Wesley, 1996.
    [47] D. Foata, D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Combin. Theory Ser. A 42 (1997), 380-384.
    [48] H.G. Forder, Some problems in combinatorics, Math. Gazette, 45 (1961), 199-201.
    [49] I.P. Goulden, D.M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983.
    [50] Gouyou-Beauchamps, Dominique; Vauquelin, Bernard Deux proprietes combinatoires des nombres de Schroder. RAIRO Inform. Theor. Appl. 22 (1988), 361-388.
    [51] J.L. Hodges, Galton’s rank-order test, Biometrika 42 (1955), 261-262.
    [52] A. Holme, A combinatorial proof of the duality defect conjecture in codimension 2, Discrete Math. 241 (2001), 363-378; see p. 375.
    [53] M. Jani, R.G. Rieper, Contined fractions and Catalan problems, Elec. J. Combin. 7 (2000), R45.
    [54] D.E. Knuth, The Art of Computer Programming, 3rd ed. Addison-Wesley, 1998.
    [55] C. Krattenthaler, A new q-analogue formula and some applications, Proc. Amer. Math. Soc. 90 (1984), 338-344.
    [56] C. Krattenthaler, Permutation with restricted patterns and Dyck paths, Adv. in Appl. Math. 27.2/3 (2001), 510-530.
    [57] G. Kreweras, Sur les partitions noncroisees d’un cycle, Discrete Math. 1 (1972), 333-350.
    [58] D. Kremer, Permutations with forbidden subsequences and a generalized Schr¨oder number. Discrete Math. 218 (2000), 121-130.
    [59] Kuchinski, Catalan structures and correspondences, M.Sc. thesis, Department of Mathematics, West Virginia University, 1977.
    [60] J. Labelle, Y.N. Yeh, Generalized Dyck paths, Discrete Math. 82 (1990) 1-6.
    [61] J. Labelle, Y.N. Yeh, Dyck paths of knight moves, Discrete Appl. Math. 24 (1989) 213-221.
    [62] G. Lam`e, Extrait d’une lettre de M. Lam`e ´a M. Liouville sur cette question: Un polygone convexe `etant donn`e, de combien de mani`eres peut-on le partager en triangles au moyen de diagonales?, J. Math. Pures Appl.(1) 3(1838), 505-507.
    [63] C.-K. Lim and K. S. Lam, The characteristic polynomial of ladder graphs and an annihilating uniqueness theorem, Discrete Math. 151 (1996), 161-167.
    [64] J.J. Luo, Catalan numbers in the history of mathematics in China, Combinatorics and Graph Theory, World Scientific, 1992, 68-70.
    [65] P.A. MacMahon, Collected papers: Combinatorics, vol I, MIT Press, Cambridge, MA, 1978, p.1345.
    [66] T. Mansour, Counting peaks at height k in a Dyck path, J. Integer Seq.,5 (2001), Article 02.1.1
    [67] A. Meir and J.W. Moon, Path edge-covering constants for certain families of trees, Utilitas Math. 14 (1978) 313–333.
    [68] A. Meir and J.W. Moon, On nodes of out-degree one in random tree, 405–416, in Combinatorics, Colloq. Math. Soc. J´anos Bolyai 52, North-Holland, 1988.
    [69] S.G. Mohanty, Lattice path counting and applications, Academic Press, New York, 1979.
    [70] J. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products, Bull. Amer. Math. Soc. 54 (1948), 352-360.
    [71] T.V. Narayana, Cyclic permutation of lattice paths and the Chung Feller theorem, Skand. Aktuarietidskr. (1967), 23-30.
    [72] T.V. Narayana, Lattice path combinatorics with statistical applications, Mathematical Expositions, University of Toronto Press, Toronto, 1979.
    [73] E. Netto, Lehrbuch der Combinatorik, Teubner, Leipzig, 1900.
    [74] P. Peart and W-J. Woan, Dyck paths with no peaks at height k, J. Integer Seq. 4 (2001), Article 01.1.3.
    [75] E. Pergola and R. Sulanke, Schr¨oder triangles, paths, and parallelogram polyominoes, J. Integer Seq. 1 (1998), Article 98.1.7.
    [76] E. Pergola and R. Pinzani, A combinatorial interpretation of the area of Schr¨oder paths, Elec. J. Combin. 6 (1999), R40.
    [77] Randrianarivony, q, p-Analogue des nombres de Catalan, Discrete Math. 178 (1998), 199-211.
    [78] R. C. Read, On general dissections of a polygon, Aequat. Math. 18 (1978), 370-388.
    [79] J. Riordan, Enumeration of plane trees bt branches and endpoints, J. Combin. Theory Ser. A 19 (1975), 214-222.
    [80] T. J. Rivlin, Chebyshev Polynomials, From approximation theory to algebra and number theory, John Wiley & sons, 1990.
    [81] A. Robertson, H.S. Wilf and D. Zeilberger, Permutation patterns and continued fractions, Elec. J. Combin. 6 (1999), R38.
    [82] D.G. Rogers. A Schroder triangle: three combinatorial problems. Combinatorial mathematics, V (Proc. Fifth Austral. Conf., Roy. Melbourne Inst. Tech., Melbourne, 1976), pp. 175–196. Lecture Notes in Math.,Vol. 622, Springer, Berlin, 1977.
    [83] D.G. Rogers and L.W. Shapiro, Some correspondences involving the Schr¨oder numbers and relations. Combinatorial Mathematics, Proceedings of the International Conference on Combinatorial Theory Canberra, August 16-27, 1977, Lecture Notes in Mathematics, Vol. 686, Springer, Berlin, 1978, pp. 267-274.
    [84] D.G. Rogers, The enumeration of a family of ladder graphs, Part II: Schr¨oder and superconnective relations, Quart. J. Math. Oxford (2) 31 (1980), 491–506.
    [85] D.G. Rogers and L.W. Shapiro, Deques, trees and lattice paths, on K.L. MvAvaney (Ed.), Combinatorial Mathematics VIII, Proceedings of the Eighth Australian Conference on Combinatorial Mathematics, Geelong, Australiam August 25-29, 1980, Lecure Notes in Mathematics, Vol. 884, Springer, Berlin, 1981, pp. 293-303.
    [86] E. Schr¨oder, Vier combinatorische probleme, Z. f¨ur Math. Physik 15 (1870), 361-370.
    [87] L. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), 83-90.
    [88] R. Donaghey and L.W. Shapiro, Motzkin numbers, J. Combin. Theory Ser. A 23 (1977), 291-301.
    [89] L. Shapiro and A. B. Stephens. Bootstrap percolation, the Sch"roder numbers, and the N-kings problem. SIAM J. Discrete Math. 4 (1991), 275-280.
    [90] L.J. Shapiro, S. Getu, W.J. Woan and L.C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229-239.
    [91] L. Shapiro and R.A. Sulanke, Bijections for the Schr¨oder numbers, Mathematics Magazine 73 (2000), 369–376.
    [92] L.W. Shapiro, Some open questions about random walks, involutions, limiting distributions, and generating functions. Special issue in honor of Dominique Foata’s 65th birthday (Philadelphia, PA, 2000). Adv. in Appl. Math. 27 (2001), no. 2-3, 585–596.
    [93] R. Simion, Noncrossing partitions, Discrete Math. 217 (2000), 367-409.
    [94] N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995. BIBLIOGRAPHY 121
    [95] N.J.A. Sloane and S. Plouffe, The On-Line Encyclopedia of Integer Sequences,
    http://www.research.att.com/njas/sequences/Seis.html.
    [96] D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, 1986.
    [97] R. Stanley, Hipparchs, Plutarch, Schr¨oder and Hough, Amer. Math. Monthly 104(4) (1997), 344-350.
    [98] R. Stanley, Enumerational Combinatorics, Vol. I, Cambridge University Press, 1986.
    [99] R. Stanley, Enumerational Combinatorics, Vol. II, Cambridge University Press, 1999.
    [100] R. Stanley, Catalan Addendum, Problem C6, version 06/12/02
    http://www-math.mit.edu/ rstan/ec/catadd.ps.gz
    [101] P.R. Stein and M.S Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math. 26 (1978), 261-272
    [102] Sulanke, Robert A. Bijective recurrences concerning Schr¨oder paths. Elec. J. Combin. 5 (1998), R47.
    [103] J. West, Generating trees and the Catalan and Schr¨oder numbers. Discrete Math. 136 (1995), 247-262.

    QR CODE