簡易檢索 / 詳目顯示

研究生: 蔡志強
Jr-Chiang Tsai
論文名稱: 幾個非線性方程解的結構
The structure of solutions of some nonlinear differential equations.
指導教授: 郭忠勝
Guo, Jong-Shenq
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 110
中文關鍵詞: 拋物型方程爆破解自我相似解相平面
英文關鍵詞: parabolic equation, blow-up solution, self-similar solution, phase plane
論文種類: 學術論文
相關次數: 點閱:249下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文,我們首先研究一個半線性常微分方程的初值問題。這個問題與一個半線性拋物型方程的爆破解之漸近行為有很密切的關係。在某些適當的條件下,我們刻畫此常微分方程解的結構,並由此導出該初值問題的整體解之唯一性。
    接下來,我們研究一個具有suplinear反應項的非線性拋物型方程。藉由研究該方程的backward之自我相似解,我們構造出有限個僅在單一點爆破的自我相似解,並且這些解所具有之極值點的個數是互不相同。
    最後,我們研究一個三階常微分方程的邊界值問題(BVP),這個問題起源於:在飽和介質中,垂直放置一塊不具有滲透性的加熱平板,並考慮具有穩定自由對流的自我相似解。我們考慮此三階常微分方程之初值問題的所有解的結構。首先,我們將解分成六類。然後,經過適當的變換,將此三階常微分方程轉換為一個二階常微分方程,再利用比較原理,我們可以得到所有解的初步結構。這也就回答了Belhachmi,Brighi 與 Taous在2001年所提出的一些open問題。為了進一步區分這些解,我們引進一個新的變換,該變換將此三階常微分方程轉換為兩個一階常微分方程所組成之方程組。然後藉由相平面的分析,我們得到解的更精細之結構。

    In this thesis, we first study an initial value problem for a semilinear ordinary differential equation. This problem is closely related to the blow-up behaviour of a semilinear parabolic equation. Under some restriction, we characterize the structure of solutions and derive the uniqueness of positive global solution of this initial value problem.

    Next, we study a nonlinear parabolic equation with a superlinear reaction term. By studying the backward self-similar solutions for this equation, we construct a finite number of self-similar single-point blow-up patterns with different oscillations.

    Finally, we study a boundary value problem for a third order differential equation which arises in the study of self-similar solutions of the steady free convection problem for a vertical heated impermeable flat plate embedded in a porous medium. We consider the structure of solutions of the initial value problem for this third order differential equation. First, we classify the solutions into 6 different types. Then, by transforming the third order equation into a second order equation, with the help of some comparison principle we are able to derive the structure of solutions. This answers some of the open questions proposed by Belhachmi, Brighi, and Taous in 2001. To obtain a further distinctions of the solution structure, we introduce a new change of variables to transform the third order equation into a system of two first order equations. Then by the phase plane analysis we can obtain more information on the structure of solutions.

    1. Introduction(p1-p12) 2. Structure of positive solutions to a semilinear initial value problem(p13-p28) 3. The backward self-similar solutions for a nonlinear parabolic equation(p29-p47) 4. A third order differential equation in boundary layer theory(p48-p110)

    M.M. Ad''yutov, Yu. A. Klokov, \& A.P. Mikhailov\paper
    Self-simulating thermal structures with half-width\jour
    Diff. Equations\vol 19\yr (1983)\pages 809-815\endref

    W.H.H. Banks \& M.B. Zaturska\paper Eigensolutions in
    boundary layer flow adjacent to a stretching wall\jour IMA J. Appl.
    Math.\vol 36\yr (1986)\pages 263-273.\endref

    J. Bebernes \& D. Eberly\inbook
    ''Mathematical Problems from Combustion Theory'', Applied Mathematical
    Sciences No. 83\publ Springer-Verlag, New York, 1989\endref

    Z. Belhachmi, B. Brighi \& K. Taous\paper On the concave
    solutions of the Blasius equation\jour Acta Math. Univ. Comenianae\vol
    69\yr (2000)\pages 199-214.\endref

    Z. Belhachmi, B. Brighi, \& K. Taous\paper On a family
    of differential equations for boundary layer approximations in porous
    media\jour Euro. J. of Applied Mathematics\vol 12\yr (2001)\pages 513-528.
    \endref

    C.J. Budd \& Y.-W. Qi\paper The existence of bounded solutions
    of a semilinear elliptic equation\jour J. Diff. Eq.\vol 82\yr (1989)\pages 207-218\endref

    M. A. Chaudhary, J. H. Merkin \& I. Pop\paper Similarity
    solutions in free convection boundary-layer flows adjacent to
    vertical permeable surfaces in porous media. I: Prescribed surface
    temperature\jour Euro. J. Mech. B-Fluids\vol 14\yr (1995)\pages 217-237.
    \endref

    M. A. Chaudhary, J. H. Merkin \& I. Pop\paper Similarity
    solutions in free convection boundary-layer flows adjacent to
    vertical permeable surfaces in porous media. II: Prescribed surface
    heat flux\jour Heat and Mass Transfer\vol 30\yr (1995)\pages 341-347.
    \endref

    P. Cheng \& W. J. Minkowycz\paper Free convection about a
    vertical flat plate embedded in a porous medium with application to heat
    transfer from a dike\jour J. Geophys. Res.\vol 82\yr
    (1977)\pages 2040-2044.\endref

    W. A. Coppel\paper On a differential equation of boundary
    layer theory\jour Phil. Trans. Roy. Soc. London, Ser. A\vol 253\yr
    (1960)\pages 101-136.\endref

    S.-C. Fu, J.-S. Guo, and J.-C. Tsai\paper
    Blow-up behavior for a semilinear heat equation with a
    nonlinear boundary condition\jour Tohoko Math. J.\vol 55\yr (2003)\pages 565-581\endref

    V.A. Galaktionov \& J.L. Vazquez\paper Continuation
    of blowup solutions of nonlinear heat equations in several space
    dimensions\jour Comm. Pure Appl. Math.\vol 50\yr 1997\pages 1-67\endref

    Y. Giga\paper On elliptic equations related to self-similar
    solutions for nonlinear heat equations\jour Hiroshima Math. J.\vol 16\yr
    (1986)\pages 539-552\endref

    Y. Giga and R.V. Kohn\paper Asymptotically
    self-similar blow-up of semilinear heat equations\jour Comm. Pure
    Appl. Math.\vol 38\yr (1985)\pages 297-319\endref

    J.-S. Guo\paper Similarity solutions for a quasilinear
    parabolic equation\jour J. Australian Math. Soc.-Ser. B\vol
    375\yr (1995)\pages 253-266\endref

    J.-S. Guo, Y.-J. Lin Guo \& J.-C. Tsai\paper Single-point
    blow-up patterns for a nonlinera parabolic equation\jour Nonliner
    Analysis \vol 53\yr (2003)\pages 1149-1165\endref

    J.-S. Guo and J.-C. Tsai\paper Structure of positive
    solutions to a semilinear initial value problem\jour Funkcialaj
    Ekvacioj\vol 46\yr (2003)\pages 409-420\endref

    P. Hartman\inbook
    ''Ordinary Differential Equations''\publ Wiley, New York, 1964.\endref

    N. Ishimura \& S. Matsui\paper On blowing-up solutions of the
    Blasius equation\jour Discrete and Continuous Dynamical Systems\vol 9\yr
    (2003)\pages 985-992.\endref

    L.A. Lepin\paper Countable spectrum of eigenfunctions of a
    nonlinear heat-conduction equation with distributed parameters\jour
    Diff. Eq.\vol 24\yr (1988)\pages 799-805\endref

    Z. Lin and M. Wang\paper The blow-up properties of
    solutions to semilinear heat equations with nonlinear boundary
    conditions\jour Z. Angew. Math. Phys.\vol 50\yr (1999)\pages
    361-374\endref

    E. Magyari \& B. Keller\paper Exact solutions for self-simlar
    boundary-layer flows induced by permeable stretching walls\jour Euro. J.
    Mech. B-Fluids\vol 19\yr (2000)\pages 109-122.\endref

    Y.-W. Qi\paper The self-similar solutions to a fast diffusion
    equation\jour Z. Angrew. Math. Phys.\vol 45\yr (1994)\pages 914-932\endref

    Y.-W. Qi\paper The existence of similarity solutions to a
    quasilinear parabolic equation\jour Differential and Integral Eq.\vol 9\yr
    (1996)\pages 599-606.

    A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, \& A.P.
    Mikhailov\inbook ''Blow-up in Quasilinear Parabolic Equations'',
    de Gruyter Exposition in Mathematics No. 19\publ Walter de Gruyter, Berlin,
    1995\endref

    W.C. Troy\paper The existence of bounded solutions of a
    semilinear heat equation\jour SIAM J. Math. Anal.\vol 18\yr (1987)\pages
    332-336\endref

    E. Yanagida\paper Uniqueness of positive radial solutions of
    $\triangle u+g(r)u+h(r)u^{p}=0 \;\; \hbox{in}\;
    R^{n}$\jour Arch. Rational Mech. Anal.
    \vol 115\yr (1991)\pages 257--274\endref

    E. Yanagida\paper Structure of positive radial solutions of
    Matukuma's
    equation\jour Japan J. Indust. Appl. Math.\vol 8\yr (1991)\pages
    165--173\endref

    W. Walter\inbook "Differential and Integral Inequalities"
    \publ Springer-Verlag, New York, 1970.\endref

    M. Wang and X. Wang\paper Existence of positive solutions
    to a nonlinear
    initial problem\jour Nonlinear Analysis\vol 44\yr (2001)\pages 1133-1136
    \endref

    H. Weyl\paper On the differential equation of the simplest
    boundary-layer problem\jour Ann. Math.\vol 43\yr (1942)\pages 381-407.
    \endref

    QR CODE