簡易檢索 / 詳目顯示

研究生: 劉峰榮
論文名稱: 西太平洋MD05-2922岩芯18萬年以來有孔蟲碳氧同位素記錄
指導教授: 米泓生
Mii, Horng-Sheng
李孟陽
Lee, Meng-Yang
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 西太平洋暖池安通爪哇海底高原底棲性有孔蟲穩定碳氧同位素
論文種類: 學術論文
相關次數: 點閱:160下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對安通爪哇海底高原(Ontong Java Plateau)頂部MD05-2922岩芯(4°59.28 S;156°08.80 E;水深1460公尺)進行底棲性有孔蟲Cibicidoides wuellerstorfi穩定同位素分析,並對比Lisiecki and Raymo (2005)所提出之LR04標準曲線,建立了西赤道太平洋暖池中心18萬年以來的氧同位素年代地層架構。
    經由本岩芯與象徵南極中層水(Antarctic Intermediate Water, AAIW)源區的MD97-2120岩芯的C. wuellerstorfi碳同位素相比,結果顯示兩者碳同位素值於冰期較為接近,表示西太平洋地區冰期時受AAIW影響較強,但過去研究認為冰期屬於AAIW生成較弱的時期,因此推估造成西太平洋於冰期時受AAIW影響增強的原因,可能為太平洋其他水團同時在冰期減弱,且減弱幅度較AAIW大,使得水體訊號得以傳送至西太平洋地區。
    從印度-太平洋、南大西洋及亞南極區的岩芯記錄觀察,早冰消期普遍存在浮游性有孔蟲碳同位素極小值的現象,其中東太平洋湧升流區的極小值記錄,被認為是AAIW增強的訊號,而西太平洋則被認為沒有明顯的碳同位素極小值記錄出現,但由本岩芯表水及溫躍層種浮游有孔蟲Globigerinoides sacculifer與Pulleniatina obliquiloculata之碳同位素數值發現,西太平洋地區於冰消期亦存在碳同位素極小值事件,而成因主要則是受營養鹽突然增高或海水面上升,有機物大量進入海洋系統,造成海水的碳同位素數值急遽下降的可能性較大。

    We have generated both benthic and planktonic foraminiferal oxygen and carbon isotope records of IMAGES (International Marine Past Global Changes Studies) core MD05-2922 from Ontong Java Plateau (4°59.28 S, 156°08.80 E, 263cm long, water depth 1460m). Based on the 18O records of benthic foraminifera Cibicidoides wuellerstorfi, an age model is established for the past 180 ka.
    The circulation of Antarctic Intermediate Water is thought to make an important contribution to the global ocean–climate system, but the details of this interaction are not fully understood especially in western Pacific. Difference in 13C values between core MD05-2922 and core MD97-2120 (near the source region) during glacial times were less than those during interglacial times indicating that the influence of AAIW increased during glacial times. However, it may not be due to the strengthened of AAIW but due to the weakened of other water masses in this region.
    The carbon isotope minimum event at the beginning of glacial terminations is a common feature record in planktonic foraminiferal carbon isotopic records. The 13C minimum records in eastern equatorial pacific were thought due to the enhancement of formation of Antarctic Intermediate Water. Our carbon isotopic data of G. sacculifer and P. obliquiloculata appeared the same patterns during deglacial period. However, we inferred the events in western Pacific were cursed by abruptly increased nutrient or organic matters from continental shelf transported to ocean when sea level rises.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目 viii 表目 xiv 第一章、緒論 1 1.1 前言 1 1.2 研究區域及背景 4 1.2.1 區域氣候與水文背景 4 1.2.2 南極中層水的水文背景 10 1.3 研究目的 14 第二章、研究原理與方法 15 2.1 有孔蟲的穩定氧碳同位素 15 2.1.1 氧同位素意義 16 2.1.2 碳同位素意義 17 2.1.3米蘭科維奇天文理論 18 2.2 有孔蟲標本挑選與分析 20 2.2.1 樣本前處理 20 2.2.2 有孔蟲挑選 21 2.2.3 氧碳同位素分析 22 2.3 溶蝕效應代用指標之原理與方法 22 2.3.1 碳酸鈣含量百分比 22 2.3.2 粗顆粒沉積物重量百分比 23 2.3.3 浮游性有孔蟲平均殼重 24 第三章、研究結果 25 3.1 年代架構之建立 25 3.1.1 碳十四定年分析 25 3.1.2 氧同位素地層 27 3.1.3 Globigerinoides ruber (pink)生物末現面 32 3.1.4 時間序列分析 33 3.2 有孔蟲穩定同位素分析結果 35 3.2.1 氧同位素分析結果 35 3.2.2 碳同位素分析結果 37 3.3 溶蝕作用代用指標之記錄 39 第四章、討論 41 4.1 安通爪哇海底高原地區的溶蝕效應 41 4.2 西太平洋冰期-間冰期的洋流變化 47 第五章、結論 61 參考文獻 63 作者簡介 70

    Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y., 1994, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal: Earth and Planetary Science Letters, v. 126, p. 91-108.

    Berger, W. H., 1979, Stable isotope in foraminifera., in Lipps J. H., Berger, W. H., Buzas, M. A., Douglas, R. G., Ross, C. A., eds., Foraminiferal ecology and paleocology(SEPM short course No. 6), Society of Economic Paleontologists and Mineralogists, Houston, Texas, p. 156–197.

    Bickert, T., Berger, W. H., Burke, S., Schmidt, H., and Wefer, G., 1993, Late Quaternary stable isotope record of benthic foraminifera at sites 805 and 806, Ontong Java Plateau., in Berger, W.H., Kroenke, L.W., Mayer, L.A., et al., eds., Proceedings of the Ocean Drilling Program, Scientific results, Volume 130: College Station, Texas, Ocean Drilling Program, p.414–420.

    Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G., 1993, Correlations between climate records from North Atlantic sediments and Greenland ice: Nature, v. 365, p. 143–147.

    Bostock H. C., Opdyke B. N., Gagan M. K. and Fifield L. K., 2004, Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation: Paleoceanography, v. 19, PA4013.

    Broecker, W. S., and Clark, E., 1999, CaCO3 size distribution: a paleocarbonate ion proxy: Paleocenography, v. 14, p. 596–604.

    Broecker, W. S., and Clark, E., 2001, Glacial-to-Holocene redistribution of carbonate ion in the Deep Sea: Science, v. 294, p. 2152–2155.

    Broecker, W. S., and Clark, E., 2001, An evaluation of Lohmann’s foraminifera weight dissolution index: Paleocenography, v. 16, p. 531–534.

    Broecker, W. S., and Clark, E., 2001, Reevaluation of the CaCO3 size index paleocarbonate ion proxy: Paleocenography, v. 16, p.669–671.

    Broecker, W. S., and Clark, E., 2003, Glacial-age deep sea carbonate ion concentrations, Geochemistry Geophysics Geosystems, v. 4, 1047.

    de Garidel-Thoron, T., Beaufort, L., Bassinot, F., and Henry, P., 2004, Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode: Proceedings of the National Academy of Sciences, v. 101, p. 9187–9192.

    eWOCE Gallery – Pacific (http://www.ewoce.org/gallery/Map_Pacific.html)

    Goericke, R. and Fry, B., 1994, Variations of marine plankton 13C with latitude, temperature and dissolved CO2 in the world ocean: Global Biogeochemical Cycles, v. 8, p.85–90.

    Guilderson, T. P., Schrag, D. P., and Cane, M. A., 2004, Surface water mixing in the Solomon Sea as documented by high-resolution coral 14C record: Journal of Climate, v. 17, p.1147-1156.

    Hendon, H. H., and Glick, J., 1997, Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans: Journal of Climate, v. 10, p.647–661.

    Herguera J. C., Jansen E., and Berger W. H., 1992, Evidence for bathyal front at 2000m depth in the glacial Pacific, based on a depth transect on Ontong Java Plateau: Paleoceanography, v. 7, p. 273–288.

    Imbrie, J., Hays, J., Martinson, D., McIntyre, A., Morley, J., Pisias, N., Prell, W., and Shackleton, N., 1984, The orbital theory of Pleistocene climate support from revised 18O record, in Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., eds., Milankovitch and Climate: Dordrecht, Reidel, p. 269-305.

    Keeling R. F. and Stephens B. B., 2001, Antarctic sea ice and the control of Pleistocene climate instability: Paleoceanography, v. 16, p. 112–131.

    Knorr, G., and Lohmann, G., 2003, Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation: Nature, v. 424, p. 532–536.

    Lisiecki L. E.,and Raymo M. E., 2005, A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records: Paleoceanography, v. 20, p. 1003–1019.

    Lohmann, G. P., 1995, A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution: Paleoceanography, v. 10, p. 445–457.

    Loubere, P., Richaud, M., and Mireles, S., 2007, Variability in tropical thermocline nutrient chemistry on the glacial/interglacial timescale: Deep-Sea Research II, v. 54, p. 747–761.

    Lynch-Stieglitz, J., Stocker, T.F., Broecker, W.S. and Fairbanks, R.G., 1995, The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling: Global Biogeochemical Cycles, v. 9, p.653–665.

    Matsumoto K., Oba T., Lynch-Stieglitz J., and Yamamoto H., 2002, Interior hydrography and circulation of the glacial Pacific Ocean: Quaternary Science Reviews. v. 21, p. 1693–1704.

    McCartney, M. S.,1977, Subantarctic mode water., in Angel, M., eds., A Voyage of Discovery, George Deacon Anniversary Volume, Pergamon Press, p. 103–119.

    McCorkle, D. C., and Keigwin, L. D.,1994, Depth Profiles of δ13C in Bottom Water and Core Top C. wuellerstorfi on the Ontong Java Plateau and Emperor Seamounts: Paleoceanography, v. 9, p. 197–208.

    Ninnemann, U. S., and C. D. Charles, 1997, Regional Differences in Quaternary Subantarctic Nutrient Cycling: Link to Intermediate and Deep Water Ventilation: Paleoceanography, v. 12, p. 560–567.

    Pahnke K. and Zahn R., 2005, Southern hemisphere water mass conversion linked with North Atlantic climate variability: Science, v. 307, p. 1741–1746.

    Pahnke K., Goldstein S. L.,and Hemming S. R., 2008, Abrupt changes in Antarctic Intermediate Water circulation over the past 25,000 years: Nature Geoscience, v. 1, p. 870–874.

    Pena, L. D., Cacho, I., Ferretti, P., and Hall, M. A., 2008, El Ninõ–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections: Paleoceanography, v. 23, PA3103.

    Petit J. R., Jouzel J., Raynaud D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzmank, E. and Stievenard, M., 1999, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica: Nature, v. 399, p. 429–436.

    Piola, A. R., and Georgi D. T., 1982, Circumpolar properties of Antarctic Intermediate Water and Subantarctic Mode Water: Deep Sea Research, v. 29, p. 687–711.

    Rahmstorf, S., 1996, On the Freshwater Forcing and Transport of the Atlantic Thermohaline Circulation: Climate Dynamics, v. 12, p. 799–811.

    Reverdin, G., Frankignoul, C., Kestenare, E., and McPhaden, M. J., 1994, Seasonal variability in the surface currents of the equatorial Pacific: Journal of Geophysical Research, v. 99, p. 20323–20344.

    Ribbe J., 2001, Intermediate water mass production controlled by Southern Hemisphere winds: Geophysical Research Letters, v. 28, p. 535–538.

    Saenko, O. A., Weaver, A. J., and Gregory, J. M., 2003, On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses: Manuscript Received January, v. 16, p. 2797–2801.

    Sarmiento, J.L., and Gruber, N., 2002, Sinks for anthropogenic carbon: Physics Today, v. 55, p. 30-36.

    Sarnthein, M., Winn, K., Jung, S. J. A., Duplessy, J.C., Labeyrie, L., Erlenkeuser H., and Ganssen, G., 1994, Changes in East Atlantic Deep water Circulation Over the Last 30,000 years: Eight Time Slice Reconstructions: Paleoceanography, v. 9, p. 209–267.

    Schlitzer, R., 2000. Electronic atlas of WOCE hydrographic and tracer data now available: Eos, Transactions American Geophysical Union, v. 81, p. 45-45.

    Schmitz, W.J. Jr., 1996, On the world ocean circulation: vol. II, The Pacific and Indian Oceans/a global update: Technical Report, Woods Hole Oceanographic Institution, WHOI-96-08, p. 237.

    Shackleton, N. J., and Opdyke, N. D., 1973, Oxygen isotope and Paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale: Quaternary Research, v. 3, p. 39–55.

    Sloyan B. M., and S. R. Rintoul, 2001a, The Southern Ocean limb of the global deep overturning circulation: Journal of Physical Oceanography, v. 31, p. 143–173.

    Sloyan B. M., and S. R. Rintoul, 2001b, Circulation, renewal and modification of Antarctic mode and intermediate water: Journal of Physical Oceanography, v. 31, p. 1005–1030.

    Sokolov S. and Rintoul S., 2000, Circulation and water masses of the southwest Pacific: WOCE Section P11, Papua New Guinea to Tasmania: Journal of Marine Research, v. 58, p. 223–268.
    Spero, H. J., Bijma, J., Lea, D. W. and Bemis, B. E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390, 497–500.

    Spero H. J. and Lea D. W., 2002, The Cause of Carbon Isotope Minimum Events on Glacial Terminations: Science, v. 296, p. 522–525.

    Talley, L. D., 1999, Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations., in Clark, P., Webb, R. S. and Keigwin, L. D., eds., Mechanisms of Global Climate Change at Millennial Time Scales, Geophysical Monograph Series, American Geophysical Union., Washington, DC, U.S.A., p. 1–22.

    Thiede, J., Bauch, D., Erlenkeuser, H., Winckler, G., Pavlova G. and Thiede, J., 2002, Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions: Marine Micropaleontology, v. 45, p. 83–99.

    Thompson, P. R., Bé, W. H. A., Duplessy, J.C., and Shackleton, N.J., 1979, Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific oceans: Nature, v. 280, p. 554–555.

    Weaver, A. J., Saenko, O. A., Clark, P. U.,and Mitrovica, J. X., 2003, Meltwater pulse 1a from Antarctica as a trigger of the Bølling-Allerød warm interval: Science, v. 299, p. 1709–1713.

    Webster P. J., 1994, The role of hydrological processes in ocean-atmosphere interaction: Reviews of Geophysics, v. 32, p. 427–476.

    Wu, G., and W. H. Berger, 1989, Planktonic foraminifera: differential dissolution and the Quaternary stable isotope record in the west equatorial Pacific: Paleoceanography, v. 4, p. 181–198.

    Wu, G. and Berger, W. H., 1991, Pleistocene 18O records from Ontong-Java Plateau: effects of winnowing and dissolution: Marine Geology, v. 96, p. 193–209.

    Zhang, J., Wang, P., Li, Q., Cheng, X., Jin, H., and Zhang, S., 2007, Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: foraminiferal and nannofossil evidence from ODP Hole 807A: Marine Micropaleontology, v. 64, p. 121–140.

    下載圖示
    QR CODE