簡易檢索 / 詳目顯示

研究生: 陳依鴻
Yi-Hong Chen
論文名稱: 指定質數Inert的循環擴張
Cyclic Extension with a Specific Inert Prime
指導教授: 李華介
Li, Hua-Chieh
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 26
中文關鍵詞: 循環質理想
英文關鍵詞: cyclic extension, inert, cylic division algebra, STBC, space time block code, cyclotomic
論文種類: 學術論文
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 給定了質數P和正整數n,這篇文章將探討有理數體Q的degree-n循環擴張且滿足P這個質理想是inert,這樣的擴張是否存在,當n是8的倍數時,我們將證明Q沒有degree-n的循環擴張滿足2這個質理想是inert.

    Given a prime number p and an arbitrary nature number n, we discuss how to construct a degree-n cyclic extension E/Q such that pZ is inert. When 8 divides n, we prove that there is no degree-n cyclic extension E over Q such that 2Z is inert in E.

    1. Introduction...........1 2. Preliminary............2 3. Prime Ideal 2Z.........11 4. Example of STBCs.......18

    [1] A. A. Albert, Structure of Algebras, providence, R. I.: Amer. Math. Soc.,1961,
    vol. 24.
    [2] G. J. Janusz, Algebraic Number Fields (Graduate Studies in Mathematics vol. 7),
    2nd Ed. Providence, RI: American Mathematical Society, 1995.
    [3] Kenneth Ireland and Micheal Rosen, A Classical Introduction to Modern Number
    Theory, 2nd Edition, New York: Springer-Verlag, 1990.
    [4] H. Koch, Algebraic Number Theory, New York: Springer-Verlag, 1997.
    [5] A.N.Parshin and I.R. Shafarevich Number Theory I, Encyclopaedia of Mathematical
    Sciences Vol.49.
    [6] F. Oggier and E. Viterbo, Algebraic Number Theory and Code Design for the
    Rayleigh Fading Channels (Foundations and Trends in Comm. and Inform. Theory
    vol. 1, no. 3). Hanover, MA: NOW Publisher, 2005.
    [7] T. Ono, An Introduction to Algebraic Number Theory, 2nd Edition, London and
    New York: Plenum Press, 1990.
    [8] V. Tarokh, N. Seshadri and A. R. Calderbank, Space-time codes for high data
    rate wireless communication: Performance criterion and code construction, IEEE
    Trans. Info. Theory, vol. 44, no.2, pp. 744-764, Feb. 1998.
    [9] Siavash M. Alamouti, A simple transmit diversity technique for wireless commuicationsm,
    IEEE Journal on Select Areas in Communications, vol.16, no.8,
    pp.1451-1458, Aug. 1998.
    24
    [10] L. Zheng and D. N. C. Tse, Diversity and multiplexing: a fundamental tradeoff
    in multiple-antenna channels, IEEE Trans. Info. Theory, vol. 49, no. 5, pp. 1073-
    1096, May 2003.
    [11] K. R. Kumar and G. Caire, Construction of structured LaST codes, in Proc.
    IEEE Int. Symp. Information Theory, Seattle, WA, Jul. 2006, pp. 2834-2838.
    [12] B. A. Sethuraman, B. S. Rajan, and V.Shashidhar, Full-diversity, highrate spacetime
    block codes from division algebras, IEEE Trans. Info. Theory, vol.49, no. 10,
    pp. 2596-2616, Oct. 2003.
    [13] Kiran. T. and B. S. Rajan, STBC-schemes with nonvanishing determinant for
    certain number of transmit antennas, IEEE Trans. Info. Theory, vol.51, no.8,
    pp.2984-2992, Aug. 2005.
    [14] P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar and H. F. Lu, Explicit spacetime
    codes achieving the diversity-multiplexing gain tradeoff, IEEE Transactions
    on Information Theory, vol.52, no.9, pp.3869-3884, Sep. 2006.
    [15] P. Elia, B. A. Sethuraman, and P.V. Kumar, Perfect space-time codes for any
    number of antennas IEEE Trans. Info. Theory, vol.53, no.11, pp.3853-3868, Nov.
    2007.
    [16] F. Oggier , G. Rekaya , J.-C. Belfiore and E.Viterbo, Perfect space time block
    codes IEEE Trans. Info. Theory, vol.52, no.9, pp.3885-3902, Sep. 2006.
    [17] J.-C. Belfiore and G. Rekaya, Quaternionic lattices for space-time coding, in
    Proc. IEEE Info Theory Workshop (ITW 2003), Paris, France, Apr. 2003.
    [18] J.-C. Belfiore, G. Rekaya, and E. Viterbo, The golden code: a 2×2 full-rate spacetime
    code with non-vanishing determinants, in Proc. IEEE Int. Symp. Information
    Theory, Chicago, IL, Jun./Jul 2004, p. 308.
    [19] J. Knauer and J. Richstein, The continuing search for Wieferich primes, Mathematics
    of Computation, vol.74, no.251, pp. 1559-1563, 2005.
    25
    [20] W. Keller and J. Richstein, Solutions of the congruence a^(p−1)=1(modp^r), Mathematics
    of Computation, vol.74, no.250, pp. 927-936, 2005.

    QR CODE