研究生: |
陳依鴻 Yi-Hong Chen |
---|---|
論文名稱: |
指定質數Inert的循環擴張 Cyclic Extension with a Specific Inert Prime |
指導教授: |
李華介
Li, Hua-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 循環 、質理想 |
英文關鍵詞: | cyclic extension, inert, cylic division algebra, STBC, space time block code, cyclotomic |
論文種類: | 學術論文 |
相關次數: | 點閱:210 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
給定了質數P和正整數n,這篇文章將探討有理數體Q的degree-n循環擴張且滿足P這個質理想是inert,這樣的擴張是否存在,當n是8的倍數時,我們將證明Q沒有degree-n的循環擴張滿足2這個質理想是inert.
Given a prime number p and an arbitrary nature number n, we discuss how to construct a degree-n cyclic extension E/Q such that pZ is inert. When 8 divides n, we prove that there is no degree-n cyclic extension E over Q such that 2Z is inert in E.
[1] A. A. Albert, Structure of Algebras, providence, R. I.: Amer. Math. Soc.,1961,
vol. 24.
[2] G. J. Janusz, Algebraic Number Fields (Graduate Studies in Mathematics vol. 7),
2nd Ed. Providence, RI: American Mathematical Society, 1995.
[3] Kenneth Ireland and Micheal Rosen, A Classical Introduction to Modern Number
Theory, 2nd Edition, New York: Springer-Verlag, 1990.
[4] H. Koch, Algebraic Number Theory, New York: Springer-Verlag, 1997.
[5] A.N.Parshin and I.R. Shafarevich Number Theory I, Encyclopaedia of Mathematical
Sciences Vol.49.
[6] F. Oggier and E. Viterbo, Algebraic Number Theory and Code Design for the
Rayleigh Fading Channels (Foundations and Trends in Comm. and Inform. Theory
vol. 1, no. 3). Hanover, MA: NOW Publisher, 2005.
[7] T. Ono, An Introduction to Algebraic Number Theory, 2nd Edition, London and
New York: Plenum Press, 1990.
[8] V. Tarokh, N. Seshadri and A. R. Calderbank, Space-time codes for high data
rate wireless communication: Performance criterion and code construction, IEEE
Trans. Info. Theory, vol. 44, no.2, pp. 744-764, Feb. 1998.
[9] Siavash M. Alamouti, A simple transmit diversity technique for wireless commuicationsm,
IEEE Journal on Select Areas in Communications, vol.16, no.8,
pp.1451-1458, Aug. 1998.
24
[10] L. Zheng and D. N. C. Tse, Diversity and multiplexing: a fundamental tradeoff
in multiple-antenna channels, IEEE Trans. Info. Theory, vol. 49, no. 5, pp. 1073-
1096, May 2003.
[11] K. R. Kumar and G. Caire, Construction of structured LaST codes, in Proc.
IEEE Int. Symp. Information Theory, Seattle, WA, Jul. 2006, pp. 2834-2838.
[12] B. A. Sethuraman, B. S. Rajan, and V.Shashidhar, Full-diversity, highrate spacetime
block codes from division algebras, IEEE Trans. Info. Theory, vol.49, no. 10,
pp. 2596-2616, Oct. 2003.
[13] Kiran. T. and B. S. Rajan, STBC-schemes with nonvanishing determinant for
certain number of transmit antennas, IEEE Trans. Info. Theory, vol.51, no.8,
pp.2984-2992, Aug. 2005.
[14] P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar and H. F. Lu, Explicit spacetime
codes achieving the diversity-multiplexing gain tradeoff, IEEE Transactions
on Information Theory, vol.52, no.9, pp.3869-3884, Sep. 2006.
[15] P. Elia, B. A. Sethuraman, and P.V. Kumar, Perfect space-time codes for any
number of antennas IEEE Trans. Info. Theory, vol.53, no.11, pp.3853-3868, Nov.
2007.
[16] F. Oggier , G. Rekaya , J.-C. Belfiore and E.Viterbo, Perfect space time block
codes IEEE Trans. Info. Theory, vol.52, no.9, pp.3885-3902, Sep. 2006.
[17] J.-C. Belfiore and G. Rekaya, Quaternionic lattices for space-time coding, in
Proc. IEEE Info Theory Workshop (ITW 2003), Paris, France, Apr. 2003.
[18] J.-C. Belfiore, G. Rekaya, and E. Viterbo, The golden code: a 2×2 full-rate spacetime
code with non-vanishing determinants, in Proc. IEEE Int. Symp. Information
Theory, Chicago, IL, Jun./Jul 2004, p. 308.
[19] J. Knauer and J. Richstein, The continuing search for Wieferich primes, Mathematics
of Computation, vol.74, no.251, pp. 1559-1563, 2005.
25
[20] W. Keller and J. Richstein, Solutions of the congruence a^(p−1)=1(modp^r), Mathematics
of Computation, vol.74, no.250, pp. 927-936, 2005.