簡易檢索 / 詳目顯示

研究生: 蔡其南
Chi-Nan Tsai
論文名稱: 變異型態的最小最大定理
VARIANT MINIMAX THEOREMS
指導教授: 朱亮儒
Chu, Liang-Ju
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 23
中文關鍵詞: 變異型態最小最大定理連通的t凸性的
英文關鍵詞: X-quasiconcave, jointly upward, connected, t-convex, lower semicontinuous
論文種類: 學術論文
相關次數: 點閱:177下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 所謂兩個函數的最小最大定理(minimax theorem) , 是指在給定的兩個集合$X$ 和 $Y$
    中 , 研究定義在 $X imes Y$ 上的兩個實值函數 $f$ 和 $g$ , 是否可以得到下列不等

    $$inf_{yin Y}sup_{xin X}f(x,y)leq sup_{xin X}inf_{yin Y}g(x,y).$$
    此篇論文將做進一步推廣 , 主要的推論有三層 :\
    (1) 根據Lin和Yu的研究論文 : Two Functions Generalization of Horvath's
    Minimax Theorem, 我們將推廣出一些不需要凸性的最小最大定理.
    vspace{1cm}
    (2) 打破一般關於兩個函數的最小最大定理中所規定 $f$ 必須嚴格小於或等於 $g$ 的條
    件 ,
    取而代之的是
    $$sup_{xin X}f(x,y)leq sup_{xin X}g(x,y), orall yin Y.$$
    當然 , 其中的兩個函數需稍作限制 , 包括 : 兩個函數形成聯合向上($jointly\nupward$)
    函數關係 , 以及它們所形成的上集合($upper set$)必需為連通的$dots$ 等.
    vspace{1cm}
    (3) 有時候在某個定義域上兩個函數的最小最大定理不會成立 ,
    但是若在此時稍微限制定義域的範圍後 , 最小最大定理便可以成立了 !
    於是我們利用了多值函數的一些性質 , 定義$X$- 擬凹集合 ,
    推廣出在多值函數上的最小最大定理 , 而得到下列變異型態的最小最大不等式
    $$inf_{yin T(X)}sup_{xin T^{-1}(y)}f(x,y)leq
    sup_{xin X}inf_{yin T(x)}g(x,y).$$
    其中 , $T$ 為由 $X$ 對應到 $Y$ 的多值函數 , ${g}$ 則是相應於 $T$
    的$X$- 擬凹集合.

    The socalled minimax theorem means that if $X$ and $Y$ are two sets, and
    $f$ and $g$ are two real-valued functions defined on $X imes Y$, under
    some conditions the following inequality holds:
    $$inf_{yin Y}sup_{xin X}f(x,y)leq sup_{xin X}inf_{yin Y}g(x,y).$$
    We will extend the two functions version of minimax theorems. Our purpose
    of this paper is three folds:\
    (1)According to Lin and Yu's thesis: Two Functions Generalization of Horvath's
    Minimax Theorem, we will extend some theorems without convexity.\
    (2)Without the condition of usual two functions version of minimax theorem:
    $f$ must be strictly lesser or equal to $g$, we replace it by a milder
    condition:
    $$sup_{xin X}f(x,y)leq sup_{xin X}g(x,y), orall yin Y.$$
    However, we require some restrictions; such as, the functions $f$ and $g$
    are {it jointly upward}, and their upper sets are connected.\
    (3)Sometimes on some given region, the two functions version of minimax
    theorems is failure.
    By use of the properties of multifunctions, we define the {it X-quasiconcave}
    set, so that we can extend the two functions minimax theorem to the
    graph of the multifunction. In fact, we get the inequality:
    $$inf_{yin T(X)}sup_{xin T^{-1}(y)}f(x,y)leq
    sup_{xin X}inf_{yin T(x)}g(x,y),$$
    where $T$ is a multifunction from $X$ to $Y$, and ${g}$ is a {it X-
    quasiconcave}
    set of $T$.

    [1] I. Joo (1980). A simple proof for von Neumann's minimax theorem, Acta Sci. math.
    42, 91-94.
    [2] C. Horvath (1990). Qulques theorems en theorie des Mini-Max, C. R. Acad. Sci.
    Paris, Serie. I, 310, 269-272.
    [3] Won Kyu Kim (1995). A non-compact generalization of Horvath's intersection
    theorem, Bull. Korean Math. Soc. 32, 153-162.
    [4] Bor-Luh Lin and Feng-Shuo Yu (1998). Two functions generalization of Horvath's
    minimax theorem, Kluwer Academic Publisher. Printed in the Netherlands.
    [5] Bor-Luh Lin and Feng-Shuo Yu (1999). A Two Function Metaminimax Theorem,
    Acta Math. Hungar, 83(1-2), 115-123.
    [6] M. A. Geraghty and Bor-Luh Lin (1984). Topological minimax theorems, Proc.
    Amer. Math. Soc. 91, 377-380.
    [7] F. Terkelsen (1972). Some minimax theorems, Math. Scand. 31, 405-413. 31, 405-
    413.
    [8] M. Sion (1958). On general minimax theorem, Paci c J. Math. 8, 171-176.
    [9] Ky Fan (1953). Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39, 42-47.
    [10] M. A. Geraghty and Bor-Luh Lin (1983). On a minimax theorem of Terkelsen,
    Bull. Inst. Math. Acad. Sinica. 11, 343-347.
    [11] S. Simons (1990). On Terkelsen minimax theorems, Bull. Inst. Math. Acad. Sinica.
    18, 35-39.

    QR CODE