研究生: |
王鴻仁 Wang, Hong-Ren |
---|---|
論文名稱: |
鹽類濃度對神經退化性疾病相關的 CAG 與 CTG 重複序列之DNA髮夾結構動態轉換的影響 Salt concentration dependence on DNA hairpin conformational dynamics of CAG and CTG repeats associated with neurodegenerative diseases |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 單分子螢光共振能量轉移 、CAG 重複序列 、DNA 髮夾結構 、三核苷酸重複序列擴張疾病 |
英文關鍵詞: | Single-molecule fluorescence resonance energy transfer (smFRET)Single-molecule fluorescence resonance energy transfer (smFRET), CAG tandem repeats, DNA hairpin structures, trinucleotide repeat expansion diseases |
DOI URL: | http://doi.org/10.6345/NTNU202001277 |
論文種類: | 學術論文 |
相關次數: | 點閱:222 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三核苷酸重複序列 (Trinucleotide repeats; TNR) 的不正常擴張會引發多種神經退化性遺傳疾病,其中有許多疾病是由 CAG/CTG 重複序列不正常擴張引起的,例如亨丁頓舞蹈症 (Huntington’s Disease)。由於 TNR 會形成髮夾結構且具有構型間滑動重組的特性,使 DNA 在複製、修復和重組過程中發生錯誤而造成序列擴張。本研究利用單分子螢光共振能量轉移光譜,以氯化鈉濃度為操縱變因,探討奇數重複次數 (CAG)n 與 (CTG)n 序列之動態結構轉換。在低氯化鈉濃度下,可觀察到 (CAG)n 序列傾向形成尾端單組 CAG 序列突出、由四個核苷酸組成環的懸垂髮夾結構,且可能因髮夾結構尾端不穩定而造成其部分打開,但並未觀察到兩端對齊、由三個核苷酸組成環的鈍端髮夾結構。而在較高氯化鈉濃度下,除了使 (CAG)n 序列髮夾結構局部打開之速率常數明顯下降,還出現類似於 (CTG)n 序列之懸垂與鈍端髮夾結構動態結構轉換。我們認為鈉離子可以中和 DNA 磷酸根的負電荷,使鹼基配對作用力更穩定,因此氯化鈉濃度越高,(CAG)n 序列髮夾結構越不容易打開。另外由於 A-A 錯誤配對較 T-T 錯誤配對不穩定,在低氯化鈉濃度下 CAG-CAG 配對無法支撐由三核苷酸組成且較不穩定的環狀結構,因此較不傾向形成鈍端結構,而隨著氯化鈉濃度越高,CAG-CAG 配對穩定性越高,使其有機會生成鈍端結構,因此可觀察到類似於 (CTG)n 序列的動態結構轉換,且在 (CTG)n 序列中亦觀察到當氯化鈉濃度增高,構型間的平衡偏向鈍端結構的現象。因此我們結論 TNR 髮夾結構的莖 (stem) 穩定性可由氯化鈉濃度調控,而影響其動態髮夾構型重組。
Trinucleotide repeat (TNR) is responsible for several neurodegenerative diseases. Among them, CAG and CTG causes the most diseases, such as Huntington’s Disease. The general pathogenesis of these diseases is that TNR repeats form the hairpin structures with the capability of slippage hairpin configuration, result in errors that lead to abnormal expansions in DNA replication, repair, and recombination processes. In this work, we used single-molecule fluorescence resonance energy transfer (smFRET) to study sodium chloride (NaCl) concentration dependence on the dynamic conformational changes of odd-numbered CAG and CTG repeats. The result reveals that at low NaCl concentration, CAG repeats tend to fold into an overhang hairpin structure with a tetranucleotide loop and a single CAG repeat protruding unit. Occasionally, the termini of hairpin transiently and partially open due to the instability of the stem of the hairpin. Unlike CTG repeats, the blunt-end hairpin configuration of CAG repeats was not observed. However, at high NaCl concentration, the rate constant of partial opening of hairpin decrease dramatically, and the dynamic conformational changes between the overhang and blunt-end configuration was observed. We proposed that sodium ion neutralizes the phosphate groups in the DNA backbone, resulting in lowering the repulsions between the backbones of two antiparallel pairing strands (CAG:CAG) and stabilizing this pairing interaction in the stem of the TNR hairpins. Since the A-A mismatch is less stable than the T-T mismatch, at low NaCl concentration, the CAG:CAG pairs are unable to hold the relatively unstable trinucleotide loop and make the blunt-end structure unfavored. In contrast, at higher NaCl concentration, the stem consisting of CAG:CAG pairs is stabilized, making the blunt-end hairpin thermodynamically reachable, and therefore, transitions between blunt-end and overhang configuration were observed. Moreover, as the increase of sodium chloride concentration, the equilibrium between two hairpin configurations in (CTG)n also leans to the blunt-end configuration due to the strengthening of the stem. In conclusion, stem stability can be modulated by sodium chloride concentration and change the TNR reconfiguration dynamics.
[1] Kozlowski P, de Mezer M, Krzyzosiak WJ. Trinucleotide repeats in human genome and exome. Nucleic Acids Research. 2010, 38, 4027–4039.
[2] McMurray CT. Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet. 2010, 11, 786–799.
[3] Verma AK, Khan E, Bhagwat SR, Kumar A. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders. Mol Neurobiol. 2020, 57, 566–584.
[4] Nalavade R, Griesche N, Ryan DP, Hildebrand S, Krauß S. Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis. 2013, 4, e752–e752.
[5] Xu P, Pan F, Roland C, Sagui C, Weninger K. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts. Nucleic Acids Research. 2020, 48, 2232–2245.
[6] Takahashi T, Katada S, Onodera O. Polyglutamine Diseases: Where does Toxicity Come from? What is Toxicity? Where are We Going? Journal of Molecular Cell Biology. 2010, 2, 180–191.
[7] Silva A, de Almeida AV, Macedo-Ribeiro S. Polyglutamine expansion diseases: More than simple repeats. Journal of Structural Biology. 2018, 201, 139–154.
[8] Mirkin SM. Expandable DNA repeats and human disease. Nature. 2007, 447, 932–940.
[9] Sugimoto K, Okazaki T, Okazaki R. Mechanism of DNA chain growth, II. Accumulation of newly synthesized short chains in E. coli infected with ligase-defective T4 phages. Proc Natl Acad Sci U S A. 1968, 60, 1356–1362.
[10] Santhana Mariappan SV, Silks LA, Chen X, Springer PA, Wu R, Moyzis RK, Gupta, G. Solution Structures of the Huntington’s Disease DNA Triplets, (CAG)n. Journal of Biomolecular Structure and Dynamics. 1998, 15, 723–744.
[11] Santhana Mariappan SV, Garcia AE, Gupta G. Structure and Dynamics of the DNA Hairpins Formed by Tandemly Repeated CTG Triplets Associated With Myotonic Dystrophy. Nucleic Acids Research. 1996, 24, 775–783.
[12] Leach DRF. Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays. 1994, 16, 893–900.
[13] Darlow JM, Leach DRF. The Effects of Trinucleotide Repeats Foundin Human Inherited Disorders on Palindrome Inviabilityin Escherichia coli Suggest Hairpin Folding Preferences In Viuo. Genetics. 1995, 141, 825-832.
[14] Marquis Gacy A, Goellner G, Juranić N, Macura S, McMurray CT. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995, 81, 533–540.
[15] Hartenstine MJ, Goodman MF, Petruska J. Base Stacking and Even/Odd Behavior of Hairpin Loops in DNA Triplet Repeat Slippage and Expansion with DNA Polymerase. J Biol Chem. 2000, 275, 18382–18390.
[16] Figueroa AÁ, Cattie D, Delaney S. Structure of Even/Odd Trinucleotide Repeat Sequences Modulates Persistence of Non-B Conformations and Conversion to Duplex. Biochemistry. 2011, 50, 4441–4450.
[17] Huang J, Delaney S. Unique Length-Dependent Biophysical Properties of Repetitive DNA. J Phys Chem B. 2016, 120, 4195–4203.
[18] Richard G-F, Kerrest A, Dujon B. Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. MMBR. 2008, 72, 686–727.
[19] Volle CB, Jarem DA, Delaney S. Trinucleotide Repeat DNA Alters Structure To Minimize the Thermodynamic Impact of 8-Oxo-7,8-dihydroguanine. Biochemistry. 2012, 51, 52–62.
[20] Ni C-W, Wei Y-J, Shen Y-I, Lee I-R. Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences. J Phys Chem Lett. 2019, 10, 3985–3990.
[21] 倪丞緯。2017。以單分子光譜觀測 CTG 重複序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學所。
[22] 魏語潔。2018。使用單分子技術研究棘黴素和小分子藥物減緩致病串聯重複DNA序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學所。
[23] 沈洋逸。2018。利用單分子技術研究 與染色體易碎症相關的 d(CGG) 重複序列及其抑制疾病的變異序列之構型動態學。碩士學位論文。台北:國立臺灣師範大學化學所。
[24] SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences. 1998, 95, 1460–1465.
[25] Peyret N, Seneviratne PA, Allawi HT, SantaLucia J. Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A·A, C·C, G·G, and T·T Mismatches. Biochemistry. 1999, 38, 3468–3477.
[26] Volker J, Makube N, Plum GE, Klump HH, Breslauer KJ. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: Implications for triplet expansion diseases. Proceedings of the National Academy of Sciences. 2002, 99, 14700–14705.
[27] Mitchell ML, Leveille MP, Solecki RS, Tran T, Cannon B. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins. J Phys Chem B, 2018, 122, 11841–11851.
[28] Ritort F. Single-molecule experiments in biological physics: methods and applications. J Phys: Condens Matter. 2006, 18, R531–83.
[29] 李以仁、許顥頤、秦志皞、吳佳諭。2015。單分子螢光共振能量轉移光譜簡介。化學,73卷4期,303-312。
[30] Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012, 17, 4047–4132.
[31] Axelrod D. Total Internal Reflection Fluorescence Microscopy in Cell Biology: Total Internal Reflection Fluorescence. Traffic. 2001, 2, 764–774.
[32] 黃子芸。2016。利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。
[33] Cordes T, Vogelsang J, Tinnefeld P. On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. J Am Chem Soc. 2009, 131, 5018–5019.
[34] Silva I, Rausch V, Seitz H-K, Mueller S. Does Hypoxia Cause Carcinogenic Iron Accumulation in Alcoholic Liver Disease (ALD)? Cancers. 2017, 9, 145.
[35] Sabanayagam CR, Eid JS, Meller A. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: Corrections due to nonideal transfer. The Journal of Chemical Physics. 2005, 122, 061103.
[36] Tan Z-J, Chen S-J. Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophysical Journal, 2006, 90, 1175–1190.
[37] Bonnet G, Krichevsky O, Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proceedings of the National Academy of Sciences. 1998, 95, 8602–8606.
[38] Dupuis NF, Holmstrom ED, Nesbitt DJ. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices. Biophysical Journal. 2013, 105, 756–766.
[39] Tikhomirova A, Beletskaya IV, Chalikian TV. Stability of DNA Duplexes Containing GG, CC, AA, and TT Mismatches. Biochemistry. 2006, 45, 10563–10571.