簡易檢索 / 詳目顯示

研究生: 吳昭緯
Chou-Wei Wu
論文名稱: 由微孔珊瑚骨骼穩定碳氧同位素組成與鍶/鈣比分析探討 台灣西北部全新世中期之古氣候
Mid-Holocene paleoclimate of NW Taiwan inferred from d18O, d13C and Sr/Ca ratio of coral Porites skeleton
指導教授: 米泓生
Mii, Horng-Sheng
王士偉
Wang, Shih-Wei
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 75
中文關鍵詞: 珊瑚穩定碳氧同位素古氣候鍶/鈣比全新世中期
英文關鍵詞: coral, stable isotope, paleoclimate, Sr/Ca ratio, Mid-Holocene
論文種類: 學術論文
相關次數: 點閱:156下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究挑選台灣西北部桃園海岸珊瑚礁岩芯(TY-05),選取其中微孔珊瑚(Porites)生長較為連續之區段進行穩定碳氧同位素及Sr/Ca比值成分分析,並且同時分析本地區海水的氧同位素組成,以重建中全新世時期台灣西北部沿海地區之古環境。
    珊瑚標本首先進行X射線繞射分析,以確認其組成為霰石且無受成岩作用影響;再進行X射線放射照相以確定主要生長軸方向;之後沿此生長軸以電鑽微取樣,以進行鈾釷定年、鍶鈣比值以及穩定碳氧同位素分析。
    根據鈾釷定年結果,本研究所選取珊瑚之初始生長年代為5,845±55 yr BP;其氧同位素數值則顯示18年的週期震盪,其中第4-7年生長速率緩慢(平均3.2mm/yr);因為生長緩慢的珊瑚骨骼之鍶/鈣比值與碳氧同位素組成,可能會受到動態分異效應變化的影響,而無法反映真實的環境訊號,因此分析數值須扣除此段生長速率過慢的部分。鍶/鈣比值的平均最高值和最低值分別為9.66 mmol/mol和8.59 mmol/mol (N=11),且在第7年的夏季之後有數值明顯變大的現象。氧同位素數值最高值與平均最低值平均分別為-3.64‰和-5.15‰,而碳同位素數值最高值平均與最低值平均分別為-0.26‰和-2.82‰ (N=13)。
    根據Porites珊瑚之Sr/Ca-SST轉換公式可得到5848 yr BP時平均冬夏季溫度分別為20.4°C與28.3°C。將所得溫度代入Abe at al.(1998)之18O-SST轉換公式,便可推得該時期之冬夏季平均水體氧同位素分別為0.15‰與0.10‰。其夏季海溫與現今實測值差異不大,冬季則較現今為高,冬夏溫差較現今為小,冬夏季平均海水氧同位素亦較現今為高。顯示在全新世中期台灣西北部沿海地區與整個東亞沿海地區相同,較現今為溫暖且蒸發作用較強。
    第7年夏季開始SST與d18Osw同時發生變化,SST冬夏季均提高3°C,而18Osw冬季前6年約變化量為+0.08‰,夏季變化量為+0.46‰。其原因應為該時期夏季季風強度較強,造成黑潮支流入侵台灣海峽與傳輸量增加,將鹽度較高的黑潮水向北傳送而影響到此研究地區所造成。
    將碳同位素對比於氧同位素週期與日照量週期,可發現碳同位素的極大值主要發生於春季,可能是受日照強度與共生藻營養鹽濃度變化的共同影響所致。另外可觀察到碳同位素極小值隨著時間逐漸變高,此現象為冬季變暖而使珊瑚共生藻較為活躍,使共生藻光合作用變強所造成。

    A drilling core (TY-05) was choosen from NW Taiwan and anaylzed the stable carbon and oxygen isotope composition and Sr/Ca ratio of the coral Porites inside. And analyzing the oxygen isotope composition of the seawater in the same study area, together this study will reconstruct the Mid-Holocene paleoclimate of NW Taiwan.
    Coral samples were examined by XRD to make sure the coral is pristine. X-ray radiographs were taken to identify the main growth axis. Carbonate powders of coral were micro drilled for U-Th dating, stable carbon and oxygen isotope and Sr/Ca ratio analyses using an electric dental drill along the main growth axis.
    Based on the U-Th dating result, our sample grew around 5,845±55 yr BP. δ18O data of the sample showed 18 year seasonal cycles. Annual growth rate between the 4th and the 7th years was abnormally low and less than 4mm/yr. Because the kinetic isotope effect may influence both δ13C and δ18O values of coral skeleton precipitated at < 4mm/yr growth rate (McConnaughey, 1989), the 4th -7th year records were eliminated.
    The Average of the maximum (winter) and minimum (summer) Sr/Ca ratio values are 9.66mmol/mol and 8.59 mmol/mol (N= 11), respectively. An abrupt change of Sr/Ca ratio was found in the summer of the 7th year. The average of δ18O values winter and summer are-3.64‰ and -5.15‰ (N=13) , respectively. The d13C values of the maximum and minimum are -0.26‰ and -2.82‰ (N=13), respectively.
    Sea surface temperature (SST) in 5845 yr BP inferred by Sr/Ca ratio are 20.4℃ and 28.3℃ in winter and summer, respectively. By coupling both SST and coral’s d18O record, the calculated d18Osw in 5845 yr BP, was 0.15‰ and 0.10‰ in winter and summer, respectively. A warmer and stronger evaporation condition was shown in this data in mid-Holocene, which consist with other record in East Asia.
    The abrupt change of Sr/Ca ratio in the summer of the 7th year is truly a change in SST, which represent a 3℃ change in SST. The 18Osw also show a +0.46‰ change in summer, synchronously. It’s possible that the transport of Kuroshio Branch Water was increased in Taiwan Strait during summer, and may cause by a stronger East Asian Summer Monsoon.
    Mean seasonal cycle of carbon and oxygen isotope values and the insolation at 30°N in 6000 yr BP are compared together. The maximum and minimum values of the oxygen isotope are defined as January and August, respectively. The maximum value of carbon isotope was found in spring, which preceded the seasonal insolation cycle. This result may due to the effect of both higher insolation and greater nutrient concentration. Winter stable carbon isotope show an increase trend was in this 11-year record. The increase trend in winter SST could cause a stronger photosynthesis that will increase the d13C data in coral skeletons.

    中文摘要........................................................II 英文摘要.............................................. III 目錄.................................................. V 圖目................................................. VII 表目................................................. XI 誌謝.................................................. XII 一、緒論................................................ 1 1.1前言....................................... 1 1.2全新世中期的古環境研究........................ 2 1.3造礁珊瑚之同位素與元素分析...................... 5 1.3.1珊瑚骨骼18O之環境應用..................... 8 1.3.2珊瑚骨骼13C之環境應用.................... 8 1.3.3珊瑚骨骼Sr/Ca比之環境應用.................. 9 1.4研究目的....................................... 10 二、研究地點、材料與研究方法 ............................... 11 2.1研究地點與材料 ................................ 11 2.2實驗方法....................................... 15 2.2.1前處理................................... 15 2.2.2 U-Th定年分析............................. 15 2.2.3穩定碳氧同位素分析......................... 15 2.2.4 Sr/Ca比值分析............................ 17 2.2.5水樣氧同位素分析........................... 17 三、研究結果............................................. 18 3.1 XRD分析結果 .................................. 18 3.2 U-Th定年分析結果.............................. 18 3.3海水氧同位素分析結果 ........................... 19 3.4 Sr/Ca與穩定碳氧同位素分析結果 ............... 23 四、討論.................................................. 32 4.1 Porites珊瑚年際間Sr/Ca比變化................... 32 4.2 5845 yr BP 桃園地區海水溫度.................... 33 4.3 5845 yr BP 桃園地區海水穩定氧同位素............. 34 4.4海水穩定氧同位素的年際間變化 ................... 37 4.5 SST與18Osw年際間變化的原因.................... 41 4.6 Porites珊瑚13C季節間與年際間的變化............. 42 五、結論 ..................................................46 參考文獻資料.............................................. 47 附錄 附錄一、TY-05岩芯 Porites珊瑚之U-Th定年結果............. 70 附錄二、TY-05岩芯分析區間之 Porites珊瑚18O、13C與Sr/Ca 比值.................................................... 71

    參考文獻資料

    沈川洲 (1996) 高精度之鍶鈣比值分析及其在環境上的應用。國立清華大學化學研究所博士論文,共157頁。

    森本真紀 (1998) 由珊瑚年輪解析琉球列島喜界島之全新世大暖期氣候。東京大學地理學研究所碩士論文,共73頁。

    孫虓天 (1999) 由珊瑚紀錄重建全新世大暖期之南台灣氣候。國立台灣大學地質學研究所碩士論文,共55頁。

    張志成 (2000) 台灣海峽海水氧同位素組成之時空分佈變化。國立中山大學海洋地質及化學研究所碩士論文,共89頁。

    林大成 (2004) 南海北部晚第四紀IMAGES岩心高解析度生物源沉積記錄:MD972146。國立海洋大學應用地球物理研究所碩士論文,共120頁。

    王士偉、戴昌鳳、謝凱旋 (2008) 桃園地區全新世礁灰岩之地質調查。第5屆臺灣地層研討會摘要(2008.09.24經濟部中央地質調查所) 論文集,第150頁。

    戴昌鳳、王士偉、張睿昇 (2009) 桃園觀音藻礁生態解說手冊。台灣中油股份有限公司液化天然氣工程處出版,98頁(ISBN 978-986-01-7426-7)。

    戴昌鳳 (2010) 台灣地區生物礁及其生境。古地理學報第12卷第5期,第565-576頁。
    國科會海洋學門資料庫15分網格水文資料庫: http://www.odb.ntu.edu.tw

    Abe, O., Matsumoto, E., and Isdale, P., 1998, Paleo-SST reconstruction during the last two centuries by Ishigaki coral, Japan: in Proceedings of the Third International Marine Science Symposium, Jpn. Mar. Sci. Found., Tokyo, p. 8–14.

    Alibert, C., and McCulloch, M.T., 1997, Strontium/calcium ratios in modern Porites
    corals From the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO: Paleoceanography, v. 12, no. 3, p. 345–363.

    An, Z.S., Porter, S.C., Kutzbach, J.E., Wu, X., Wang, S., Liu, X., Li, X., and Zhou, W., 2000, Aynchronous Holocene optimum of the East Asian monsoon: Quat. Sci. Rev., no. 19, p. 743– 762.

    Asamia, R., Yamada, T., Iryu, Y., Meyer, C.P., Quinn, T.M., and Paulay, G., 2004, Carbon and oxygen isotopic composition of a Guam coral and their relationships to environmental variables in the western Pacific: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 212, p. 1– 22.

    Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992 Sea-surface temperature from coral skeletal strontium/calcium ratios: Science, v. 257, p. 644–646.

    Beck, J.W., Recy, J., Taylor, F., Edwards, R.L., and Cabioch, G., 1997, Abrupt changes in early Holocene tropical SST derived from coral records: Nature, v. 385, p. 705–707.

    Berger, A., 1978, Long‐term variations of daily insolation and Quaternary climatic changes: J. Atmos. Sci., v. 35, p. 2362–2367.

    Berger, A., and Loutre, M.F., 1991 Insolation values for the climate of the last 10 million years: Quat. Sci. Rev., v. 10, p. 297–317.

    Berger, A., 1992 Orbital Variations and Insolation Database: IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 92-007. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.

    Braconnot, P., Joussaime, S., Marti, O., and deNoblet-Ducoudre, N., 1999, Synergistic feedbacks from ocean and vegetation on the african monsoon response to mid-Holocene insolation: Geophys. Res. Lett., v. 26, no. 16, p. 2481–2484.

    Cardinal, D., Hamelin, B., Bard, E., and Pätzold, J., 2001, Sr/Ca, U/Ca and 18O records in recent massive corals from Bermuda: relationships with sea surface temperature: Chemical Geology, v. 176, p. 213–233.

    Carriquiry, J.D., Risk, M.J., and Schwarcz, H.P., 1988, Timing and temperature record from stable isotopes of the 1982–1983 El Niño warming event in Eastern Pacific corals: Palaios, v. 3, p. 359–364.

    Chen, R.Y., 1977, Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated rocks: Department of Natural Resource, Indiana Geological Survey, Bloomington, Indiana, 67 p.

    Cheng, H., Adkins, J., Edwards, R.L., and Boyle, E.A., 2000, U-Th dating of deep-sea corals: Geochim. Cosmochim. Acta,, v. 64, no.14, p. 2401–2416.

    Chiang, H.W., Chen, Y.G., Fan, T.Y., and Shen, C.C., 2010, Change of the ENSO-related δ 18O-SST correlation from coral skeletons in northern South China Sea: A possible influence from the Kuroshio Current: Journal of Asian Earth Sciences, v. 39, no.6, p. 684–691.

    Clark, J.A., Farrell, W.E., and Peltier, W.R., 1978, Global changes in postglacial sea level: a numerical calculation: Quat. Res., v. 9, p. 265–287.

    Cohen, A.L., Layne, G.D., Hart, S.R., and Lobel, P.S., 2001, Kinetic control of
    skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy: Paleoceanography, v. 16, no. 1, p. 20–26.

    Cohen, A.L., Owens, K.E., Layne, G.D., and Shimizu, N., 2002, The Effect of Algal Symbionts on the Accuracy of Sr/Ca Paleotemperatures from Coral: Science, v. 296, p. 331–333.

    Cole, J.E. and Fairbanks, R.G., 1990, The Southern Oscillation recorded in the 18O of corals from Tarawa Atoll: Paleoceanography, v. 5, p. 669–683.
    Davis, B.A.S., Brewer, S., Stevenson, A.V., and Guiot, J., Data Contributors, 2003, The temperature of Europe during the Holocene reconstructed from pollen data: Quat. Sci. Rev., v. 22, p. 1701–1716.

    DeMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M., 2000, Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing: Quat. Sci. Rev., v. 19, p. 347–361.

    De Villiers, S., Shen, G.T., and Nelson, B.K., 1994, The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)seawater and skeletal growth parameters: Geochim. Cosmochim. Acta, v. 58, p. 197–208.

    De Villiers, S., Nelson, B.K., and Chivas, A.R., 1995, Biological Controls on Coral Sr/Ca and 18O Reconstructions of Sea Surface Temperatures: Science, v.269, no. 5228, p. 1247–1249.

    De Villiers, S., 1999, Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans: Earth and Planetary Science Letters, v. 171, p. 623–634.

    Druffel, E.R.M., Dunbar, R.B., Wellington, G.M., and Minnis, S.A., 1989, Reefbuilding corals and identification of ENSO warming episodes: Oceanography Series, v. 52, p. 233–254.

    Dunbar, R.B., and Wellington, G.M., 1981, Stable isotopes in a branching coral monitor seasonal temperature variation: Nature, v. 293, p. 453–455.

    Dunbar, R.B., and Cole, J.E., 1993, Coral records of ocean-atmosphere variability: Report from the workshop on coral paleoclimate reconstruction, 1–37.

    Dunbar, R.B., Linsley, B.K., and Wellington, G.M., 1996, Eastern Pacific corals monitor El Niño/Southern Oscillation, precipitation, and sea surface temperature variability over the past three centuries, in Jones, P.D., R.S. Bradley, and J. Jouzel (eds.), Climatic fluctuations and forcing mechanisms of the last 2000 years, Springer-Verlag, Berlin, p. 375-407.

    Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc. Amer., v. 64, p. 1315-1326.

    Fairbanks, R.G., and Dodge, R.E., 1979, Annual periodicity of the skeletal oxygen and carbon stable isotopic composition in the coral Montastrea Annularis: Geochim. Cosmochim. Acta, v. 43 no. 7, p. 1-10.

    Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., Mortlock, R.A., Broad, K., Moore, M.D., and Charles, C.D., 1997, Evaluating climate indices and their geochemical proxies measured in corals: Coral Reefs, v. 16, S93-S100.

    Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., and Chappell, J., 1998, Refining the eustatic sea level curve since Last Glacial Maximum using far‐intermediate field sites: Earth Planet. Sci. Lett., v. 163, p. 327–342.

    Gagan, M.K., Chivas, A.R., and Isdale, P.J., 1994, High-resolution isotopic records from corals using ocean temperature and mass spawning chronometers: Earth and Planetary Science Letters, v. 121, p. 549-558.

    Gagan, M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M. T., and Head, M. J. ,1998, Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific: Science, v. 279, p.1014–1018.

    Gagan, M.K., Ayliffe, L.K., Beck, J.W., Cole, J.E., Druffel, E.R.M., Dunbar, R.B., and Schrag, D.P., 2000, New views of tropical paleoclimates from corals: Quat. Sci. Rev., v. 19, p. 45-64.

    Gagan, M.K., Hendy, E.J., Haberle, S.G., Hantoro, W.S., 2004, Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation: Quaternary International, v. 118–119, p. 127–143.

    Grottoli, A.G., 2001, Effect of light and brine shrimp on skeletal 13C in the Hawaiian coral Porites compressa: A tank experiment: Geochim. Cosmochim. Acta, v. 66, no. 11, p. 1955–1967.

    Grottoli, A.G., Rodrigues, L. J., and Juarez, C., 2002, Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event: Marine Biology, v. 145, no. 3, p. 621-631.

    Guan, B. X., 1986, A sketch of the current structures and eddy characteristics in the East China Sea: Studia Marina Sinica, v. 27, p. 1–22 (in Chinese with English abstract).

    Guilderson, T.P., Fairbanks, R.G., and Rubenstone, J.L., 1994, Tropical Temperature Variations Since 20,000 Years Ago: Modulating Interhemispheric Climate Change: Science, v. 263, no. 5147, p. 663-665.

    Guzmán, H.M., and Tudhope, A.W., 1998, Seasonal variation in skeletal extension rate and stable isotopic (13C/12C and 18O/16O) composition in response to several environmental variables in the Caribbean reef coral Siderastrea sidereal: Maeine Ecology Progress Series, v. 166, p. 109-118.

    Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U., 2001, Southward Migration of the Intertropical Convergence Zone Through the Holocene: Science, v.293, p. 1304–1308.

    Hewitt, C.D., and Mitchell, J.F.B., 1996, GCM simulations of the climate of 6 kyr BP: mean changes and interdecadal variability: Journal of Climate, v. 9, p. 3505–3529.

    Hongo, C., and Kayanne, H., 2010, Holocene sea-level record from corals: Reliability of paleodepth indicators at Ishigaki Island, Ryukyu Islands, Japan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 287, p. 143–151.

    Hu, J.Y., Fu, Z.L., and Wu, L.X., 1990, Studies on the wintertime current structure and T-S fine-structure in the Taiwan Strait: Chin. J. Oceanol. Limnol., v. 8, no. 4, p. 319–327.

    Hu, J.Y., and Liu, M.S., 1992, The current structure during summer in southern Taiwan Strait: Trop. Oceanol., v. 11, no. 4, p. 42–47 (in Chinese with English abstract).

    Hu, J.Y., Kawamura, H., Li, C.Y., Hong, H.S., and Jiang, Y.W., 2010, Review of current and seawater volume transport through the Taiwan Strait: Journal of Oceanography, v.66, p. 591–610.

    Huntley, B., and Prentice, I.C., 1988, July temperature in Europe from pollen data, 6000 years before present: Science, v. 241, p. 687–690.

    ICDD, 2011, PDF-2 Release 2011(Database), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.
    Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M., 1971, Precision measurements of half-lives and specific activities of 235U and 238U: Physical Reviews, C4, p. 1889–1906.

    Jan, S., Wang, J., Chern, C.S., and Chao, S.Y., 2002, Seasonal variation of the circulation in the Taiwan Strait: J. Mar. Syst., v. 35, p. 249–268.

    Jan, S., Sheu, D.D., and Kuo, H.M., 2006, Water mass and throughflow transport variability in the Taiwan Strait: J. Geophy. Res. – Oceans, v. 111, C12012.

    Kiyama, O., Yamada, T., Nakamori, T., and Iryu, Y., 2000, Early Holocene coral 18O-based sea surface temperature (in Japanese with English abstract): Quaternary Research, v. 39, p. 69–80.

    Kitoh, A., and Murakami, S., 2002, Tropical Pacific climate at the mid‐Holocene and the Last Glacial Maximum simulated by a coupled ocean‐atmosphere general circulation model: Paleoceanography, v. 17, no. 3, p. 1047.

    Koshkarova, V.L. and Koshkarov, A.D., 2004, Regional signatures of changing landscape and climate of northern central Siberia in the Holocene: Russian Geology and Geophysics, v. 45, no, 6, p. 672–685.

    Kutzbach, J.E., and Street-Perrott, F.A., 1985, Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP: Nature, v. 317, p. 130–134.

    Kutzbach, J.E., and Liu, Z., 1997, Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene: Science, v. 278, p. 440–443.

    Kutzbach, J.E., Gallimore, R., Harrison, S.P., Behling, P., Selin, R., and Laarif, F., 1998, Climate and biome simulations for the past 21,000 years: Quat. Sci. Rev., v. 17, no. 6-7, p. 473-506.

    Lambeck, K., Yokoyama, Y., and Purcel, A., 2002, Into and out of the Last Glacial Maximum: Sea‐level change during oxygen isotope stages 3 and 2: Quat. Sci. Rev., v. 21, p. 343–360.

    Liew, P.M., Lee, C.Y., and Kuo, C.M., 2006, Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan: Earth and Planetary Science Letters, v.250, p. 596–605.

    Lorenz, S.J., and Lohmann, A.G., 2004, Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene: Climate Dynamics, v. 23, p. 727–743.

    Lüthi, D., Floch, M.L., Bereiter, B., Blunier, T., Barnola, J., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T.F., 2008, High‐resolution carbon dioxide concentration record 650,000–800,000 years before present: Nature, v. 453, p. 379–382.

    Marshall, J.F., and McCulloch, M.T., 2002, An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature: Geochim. Cosmochim. Acta, v. 66, no. 18, p. 3263–3280.

    McConnaaughey, T., 1989a, 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns: Geochim. Cosmochim. Acta, v. 53, p. 151–162.

    McConnaaughey, T., 1989b, 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects: Geochim. Cosmochim. Acta, v. 53, p. 163–171.

    McConnaughey, T.A., Burdett, J., Whelan, J.F., and Paull, C.K., 1997, Carbon isotopes in biological carbonates: Respiration and photosynthesis: Geochim. Cosmochim. Acta, v. 61, no. 3, p. 61 l–622.

    McCulloch, M., Gagan, M.K., Mortimer, G.E., Chivas, A.R., and Isdale, P.J., 1994, A high-resolution Sr/Ca and 18O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El Nino: Geochim. Cosmochim. Acta, v. 58, p. 2747–2754.

    McCulloch, M., Mortimer, G., Esat, T., Xianghua, L., Pillans, B., and Chappell, J., 1996, High resolution windows into early Holocene climate: Sr/Ca coralrecords from the Huon Peninsula: Earth and Planetary Science Letters, v. 138, p. 169-178.

    McCulloch, M.T., and Esat, T.M., 2000, The coral record of last interglacial sea levels and sea surface temperatures: Chemical Geology, v. 169, p. 107-129.

    Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., and Yoshida, N., 2002, Salinity records for the 1997–98 El Niño from Western Pacific corals: Geophys. Res. Lett., v. 29, no. 11, p. 1540-1544.

    Morimoto, M., Kayanne, H., Abe, O., and McCulloch, M.T., 2007, Intensified mid-Holocene Asian monsoon recorded in corals from Kikai Island, subtropical northwestern Pacific: Quaternary Research, v. 67, p. 204–214.

    Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., and Isdale, P.J., 1996, Mg/Ca Thermometry in Coral Skeletons: Science, v. 274, no. 5289, p. 961–963.

    Mitsuguchi, T., Uchida, T., Matsumoto, E., Isdale, P.J., and Kawana, T., 2001, Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments:Implications for carbonate geochemistry: Geochim. Cosmochim. Acta, v. 65, no. 17, p. 2865–2874.

    Mitsuguchi, T., Matsumoto, E., and Uchida, T., 2003, Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate: Coral Reefs, v. 22, p. 381–388.

    Nakada, M., and Lambeck, K., 1988, The melting history of the Pleistocene Antarctic ice sheet: Nature, v. 333, no. 5, p. 36-40.

    Nakada, M., Kimura, R., Okuno, J., Moriwaki, K., Miura, H., and Maemoku, H., 2000, Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations: Mar. Geol., v. 167, p. 85–103.

    Nesje, A., and Kvamme, M., 1991, Holocene glacier and climate variations in western Norway: evidence for early Holocene glacier demise and multiple Neoglacial events: Geology, v. 19, p. 610–612.

    Nino, H., and Emery, K.O., 1961, Sediments of shallow portion of East China Sea and South China Sea: Geol. Soc. Amer. Bull., v. 72, p. 731–762.

    Nitani, H., 1972, Beginning of the Kuroshio: In Kuroshio—Its Physical Aspects, p. 129–163, ed. by H. Stommel and K.Yoshida, Univ. of Washington Press, Seattle.

    Omata, T., Suzuki, A., Kawahata, H., Nojima, S., Minoshima, K., and Hata, A., 2006, Oxygen and carbon stable isotope systematics in Porites coral near its latitudinal limit: The coral response to low-thermal temperature stress: Global and Planetary Change, v. 53, p. 137–146.
    Ourbak, T., Corrège, T., Malaizé, B., Cornec, F.Le, Charlier, K., and Peypouquet, J.P., 2006, A high-resolution investigation of temperature, salinity, and upwelling activity proxies in corals: Geochem. Geophys. Geosyst., v. 7, Q03013.

    Pelejero, C., Grimalt, J.O., Heilig, S., Kienast, M., and Wang, L., 1999, High-resolution Uk37 temperature reconstructions in the South China Sea over the past 220 kyr: Paleoceanography, v. 14, p. 24–231.

    Peltier, W.R., 1994, Ice age paleotopography: Science, v. 265, p. 195–201.

    Peltier, W.R., 2002, On eustatic sea level history: Last Glacial Maximum to Holocene: Quat. Sci. Rev., v. 21, p. 377–396.

    Peng, Z.C., Chen, T.G., Nie, B.F., Head, M.J., He, X.X. and Zhou, W.J., 2003, Coral 18O records as an indicator of winter monsoon intensity in the South China Sea: Quaternary Research, v. 59, p. 285–292.

    Peng, Y.J., Xiao, J., Nakamura, T., Liu, B.L., and Inouchi, Y., 2005, Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China: Earth and Planetary Science Letters, v. 233, p. 467– 479.

    Razjigaeva, N.G., Grebennikova, T.A., Ganzey, L.A., Mokhova, L.M. and Bazarova, V.B., 2004, The role of global and local factors in determining the middle to late Holocene environmental history of the South Kurile and Komandar islands, northwestern Pacific: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 209, p. 313– 333.

    Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., and Wang, W., 2002, An Improved In Situ and Satellite SST Analysis for Climate: Journal of Climate, v. 15, p. 1609–1625.

    Schneider, R.C., and Smith, S.V., 1982, Skeletal Sr Content and Density in Porites spp. in Relation to Environmental Factors: Marine Biology, v. 66, p. 121–131.

    Selvaraj, K., Chen, C.T.A., and Lou, J.Y., 2007, Holocene East Asian monsoon variability: links to solar and tropical Pacific forcing: Geophys. Res. Lett., v. 34, L01703.

    Shackleton, N.J., 1974, Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the lastglacial:Colloque CNRS No. 219, Centre National de la Recherche Scientifique, Paris, p. 203–210

    Shen, C.C., Lee, T., Chen, C.Y., Wang, C.H., Dai, C.F., and Li, L.A., 1996, The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites coral: Geochim. Cosmochim. Acta, v. 60, no. 20, p. 3849–3858.

    Shen, C.C., Cheng, H., Edwards, R.L., Moran, S.B., Edmonds, H.N., Hoff, J.A., and Thomas, R.B., 2003, Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy: Anal. Chem., v. 75, p. 1075-1079.

    Shen, C.C., Lee, T., Liu, K.K., Hsu, H.H., Edwards, R.L., Wang, C.H., Lee, M.Y., Chen, Y. G., Lee, H.J., and Sun, H.T., 2005a, An evaluation of quantitative reconstruction of past precipitation records using coral skeletal Sr/Ca and 18O data: Earth and Planetary Sci. Let., v. 237 , p. 370– 386.

    Shen, C.C., Liu, K.K., Lee, M.Y., Lee, T., Wang, C.H. and Lee, H.J., 2005b, A novel method for tracing coastal water masses using Sr/Ca ratios and salinity in Nanwan Bay, southern Taiwan: Estuarine, Coastal and Shelf Sci., v. 65, p. 135–142.

    Shen, C.C., Siringan, F.P., Lin, K., Dai, C.F., and Gong, S.Y., 2010, Sea-level rise and coral-reef development of northwestern Luzon since 9.9 ka: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 292, p. 465-473.

    Shimamura, M., Oba, T., Xu, G., Lu, B., Wang, L., Murayama, M., Toyoda, K., and Winter, A., 2005, Fidelity of 18O as a proxy for sea surface temperature: Influence of variable coral growth rates on the coral Porites lutea from Hainan Island, China: Geochem. Geophys. Geosyst., v. 6, Q09017.

    Shimamura, M., Hyeong, K., Yoo, C.M., Watanabe, T., Irino, T., and Jung, H.S., 2008a, High resolution stable isotope records of sclreractinian corals near Ishigaki Island: Their implication as a potential paleoclimatic recorder in middle latitude regions: Geosciences Journal, v. 12, no. 1, p. 25–31.

    Shimamura, M., Hyeong, K., Watanabe, T., Irino, T., Yoo, C.M., and Kim, W.S., 2008b, Opposed trend of skeletal carbon isotopic ratios found in two different coral species collected from the same site: Genus-dependent responses: in Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, p. 7–11.

    Shimamura, M., Irino, T., Oba, T., Xu, G., Lu, B., Wang, L., and Toyoda, K., 2008c, Main controlling factors of coral skeletal carbon isotopic composition and skeletal extension rate: High-resolution study at Hainan Island, South China Sea: Geochem. Geophys. Geosyst., v. 9, Q04024.

    Steinke, S., Chiu, H.Y., Yu, P.S., Shen, C.C., Erlenkeuser, H., Löwemark, L., and Chen, M.T., 2006, On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22,000 years: Quat. Sci. Rev., v. 25, p. 1475–1488.

    Stuiver, M., Denton, G.H., Hughes, T.J. and Fastook, J.L., 1981, History of the marine ice sheet in west Antarctica during the last glaciations: a working hypothesis, In: Denton, G.H., Hughes, T.J. (Eds.), The last Great Ice Sheets. Wiley, New York, p. 319–436.
    Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A., and Lund, S., 2004, Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch: Nature, v. 431, p. 56–59.

    Swart, P.K., Saied, A., and Lamb, K., 2005, Temporal and spatial variation in the15N and 13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract: Limnol. Oceanogr., v. 50, no. 4, p. 1049–1058.

    Su, R., Sun, D., Bloemendal, J., and Zhu, Z., 2006, Temporal and spatial variability of the oxygen isotopic composition of massive corals from the South China Sea: Influence of the Asian monsoon: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 240, p. 630–648.

    Su, R., Sun, D., Chen, H., Chen, X., and Li, Z., 2010, Evolution of Asian monsoon variability revealed by oxygen isotopic record of middle Holocene massive coral in the northern South China Sea: Quat. Int., v. 213, p. 56–68.

    Sun, Y., Sun, M., Wei, G., Lee, T., Nie, B., and Yu, Z., 2004, Strontium contents of a Porites coral from Xisha Island, South China Sea: A proxy for sea-surface temperature of the 20th century: Paleoceanography, v. 19, PA2004.

    Sun, Y., Sun, M., Lee, T., and Nie, B., 2005, Influence of seawater Sr content on coral Sr/Ca and Sr thermometry: Coral Reefs, v. 24, p. 23–29.
    Sun, D., Gagan, M.K., Cheng, H., Gagan, H.S., Dykoski, C.A., Edwards, R.L. and Su, R., 2005, Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in coral 18O records from the South China Sea: Earth and Planetary Sci. Let., v. 237, p. 69–84.

    Sun, D., Su, R., McConnaughey, T.A., and Bloemendal, J., 2008, Variability of skeletal growth and δ13C in massive corals from the South China Sea: Effects of photosynthesis, respiration and human activities: Chemical Geology, v. 255, p. 414–425.

    Suzuki, A., Yukino, I., and Kawahata, H., 1999, Temperature-skeletal 18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan: Geochemical Journal, v. 33, p. 419–428.

    Suzuki, A., Hibino, K., Iwase, A., and Kawahata, H., 2005, Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: Temperature-controlled experiments: Geochim. Cosmochim. Acta, v. 69, no. 18, p. 4453–4462.

    Vettoretti, G., Peltier, W.R., and McFarlane, N.A., 1998, Simulations of Mid-Holocene Climate Using an Atmospheric General Circulation Model: J. Climate, v. 11,
    p. 2607–2627.

    Walcott, R.I., 1972, Past sea levels, eustasy and deformation of the Earth: Quat. Res., v. 2, p. 1–14.
    Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.H., Wu, J.Y., Kelly, M.J., Dykoski, C.A., and Li, X.D., 2005, The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate: Science, v. 308, p. 854–857.

    Weber, J.N., and Woodhead, P.M.J., 1970, Carbon and oxygen isotope fractionation in the skeletal carbonate of reef-building corals: Chemical Geology, v. 6, p. 93–117.

    Weber, J.N., and Woodhead, P.M.J., 1972, Temperature dependence of oxygen-18 concentration in reef coral carbonates: Geophys. Res., v. 77, p. 463–473.

    Weber, J.N., 1973, Incorporation of strontium into reef coral skeletal carbonate: Geochim. Cosmochim. Acta, v. 37, p. 2173–2190.

    Weber, J.N., Deins, P., Weber, P.H. and Baker, P.A., 1976, Depth related changes in the 13C/12C ratio of skeletal carbonate deposited by the Caribbean reef-frame building coral Montastrea annuluris : further implications of a model for stable isotope fractionation by scleractinian corals: Geochim. Cosmochim. Acta, v. 40, p. 31–39.

    Wei, G.J., Sun, M., Li, X.H., and Nie, B.F., 2000, Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 162, p. 59–74.
    Wei, G.J., Deng, W.F., Yu, K.F., Li, X.H., Sun, W.D., and Zhao, J.X., 2007, Sea surface temperature records in the northern South China Sea from mid-Holocene coral Sr/Ca ratios: Paleoceanography, v. 22, PA3206.

    Winter, A., Ishioroshi, H., Watanabe, T., Oba, T., and Christy, J., 2000, Caribbean sea surface temperatures: Two‐to‐three degrees cooler than present during the Little Ice Age: Geophys. Res. Lett., v. 27, no. 20, p. 3365–3368.

    Woodroffe, S.A., 2009, Testing models of mid to late Holocene sea-level changes, North Queenland, Australia: Quat. Sci. Rev., v. 28, p. 2474–2488.

    Wu, C.R., and Hsin, Y.C., 2005, Volume Transport Through the Taiwan Strait: A Numerical Study: Journal of Terrestrial, Atmospheric and Oceanic Sciences, v. 16, no. 2, p. 377-391.

    Wu, C.R., Chao, S.Y., and Chun, C., 2007, Transient, seasonal and interannual variability of the Taiwan Strait current: J. Oceanogr., v. 63, no. 5, p. 821–833.

    Yokoyama, Y., Nakada, M., Maeda, Y., Nagaoka, S., Okuno, J., Matsumoto, E., Matsushima, Y., and Sato, H., 1996, Holocene sea‐level change and hydro‐isostasy along the west coast of Kyushu, Japan: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 123, p. 29–47.

    Yokoyama, Y., Kido, Y., Tada, R., Minami, I., Finkel, R.C., and Matsuzaki, H., 2007, Japan Sea oxygen isotope stratigraphy and global sea‐level hanges for the last 50,000 years recorded in sediment cores from the Oki Ridge: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 247, p. 5–17.

    Yokoyama, Y., Suzuki, A., Siringan, F., Maeda, Y., Abe‐Ouchi, A., Ohgaito, R., Kawahata, H., and Matsuzaki, H., 2011, Mid‐Holocene palaeoceanography of the northern South China Sea using coupled fossil‐modern coral and atmosphere‐ocean GCM model: Geophys. Res. Lett., v. 38, L00F03.

    Yu, K.F., Chen, T.G., Huang, D.C., Zhao, H.T., Zhong, J.L. and Liu, D.S., 2001, The high-resolution climate recorded in the 18O of Porites lutea from the Nansha Islands of China: Chinese Science Bulletin, v. 46, no. 24, p. 2097–2102.
    Yu, K.F., Zhao, J.X., Wei, G.J., Cheng, X.R., and Wang, P.X., 2005, Mid–late Holocene monsoon climate retrieved from seasonal Sr/Ca and 18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea: Global and Planetary Change, v. 47, p. 301–316.

    QR CODE