簡易檢索 / 詳目顯示

研究生: 何晉良
Ho, Chin-Liang
論文名稱: 以神秘客調查與社群網站分析探勘消費者行為
Exploring Consumer Behaviors with Mystery Shoppers Surveys and Social Network Analyses
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 何秀青
Ho, Mei HC
羅乃維
Lo, Nai-Wei
黃啟祐
Huang, Chi-Yo
口試日期: 2022/07/16
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 148
中文關鍵詞: 神秘客文字探勘社交媒體主題建模偏最小平方結構方程模型
英文關鍵詞: Mystery Shopper, Text Mining, Social Media, Topic Modeling, Partial Least Square Structural Equation Modeling (PLS-SEM)
研究方法: 參與觀察法社會網路分析
DOI URL: http://doi.org/10.6345/NTNU202201618
論文種類: 學術論文
相關次數: 點閱:325下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著社群網路的發展與普及,越來越多的消費者於網路表達自己的想法或意見,也提供更多樣的消費資訊來源。文字探勘為提供研究者整合網路資料,擷取信息進行分析,探勘消費者行為的方法,並可協助企業,調整行銷策略或戰術。而神秘客分析為行銷領域長久以來,廣為運用於分析消費者行為之工具。雖然社群網路與神秘客分析各自有其價值,但少有學者同時以兩種方法分析同一筆資料,並比較結果之差異。
    因此,本研究擬探勘社群網站,擷取與產品或服務相關貼文之後,透過隱含狄利克雷分佈(Latent Dirichlet Allocation,LDA)擷取主題,以群落分析將主題分群之後,歸入理論模型構面,經專家確認後,以偏最小平方法結構方程模型Partial Least Square Structure Equation Model (PLS-SEM) 驗證路徑。本研究亦同步分析神秘客報告,以相同之文字探勘、服務品質理論模型與結構方程模型驗證路徑之顯著與否。
    本研究服務品質的探討是以服務提供者端出發,探討在服務提供的過程中可能發生影響服務品質的因素,其影響使用者所知感受與需求,本研究從使用者的角度出發,研究服務形成的過程中,使用者在服務品質模型之顯著性,研究使服務品質模型更加完善。
    本研究以台灣行動裝置門市與寵物連鎖店之服務為研究對象,以2021年之社交網絡(Dcard.tw)貼文與神秘客分析報告進行分析,比較二分析結果之異同,依據分析結果除有形性及保證性之顯著性有差異外,在可靠性、回應性及同理性上均為顯著影響服務品質之關鍵要素,本結果可作為企業規畫服務、訂定推廣決策參考之用。

    In the age of social networks, more and more consumers are expressing their opinions, thoughts, and ideas on the Internet. Text mining offers a method for researchers to retrieve network data and extract information for analysis, explore consumer behavior, and assist firms in defininig or adjusting marketing strategies or tactics. Mystery shopper analysis has long been a tool for ana-lyzing consumer behaviors. However, few scholars compare the differences between the two methods.
    Therefore, this study intends to mine social networking sites after ex-tracting posts related to products or services, extracting topics using the Latent Dirichlet Allocation (LDA), clustering the topcis into groups using cluster analysis, and classifying them into topcis. After confirming the topcis by ex-perts , and the path was verified using Partial Least Square Structural Equation Modeling (PLS-SEM). This research also analyzes the mystery shoppers report simultaneously based on the same theoretical model. The PLS-SEM is adopted again to confirm the path model.
    This study takes the services of mobile device stores and pet chains in Taiwan as the research object, analyzes the social network (dcard.tw) posts and mystery shopper analysis reports in 2021, and compares the similarities and differences between the two analysis results. According to the analytic results, except the significanct discrepencies in tangibility and assurance, reliability, responsiveness and homogeneity are the key factors that significantly affect service quality. The results can be used as a reference for enterprises to plan services and make promotion decisions.

    摘要 ...................................................................................................................... i Abstract ............................................................................................................... ii Table of Contents ............................................................................................... iii List of Tables ....................................................................................................... v List of Figures ................................................................................................... vii Chapter 1 Introduction ........................................................................................ 1 1.1 Research Backgrounds ........................................................................... 1 1.2 Research Motivations ............................................................................. 3 1.3 Research Purposes .................................................................................. 5 1.4 Research Methods .................................................................................. 6 1.5 Limitations ............................................................................................. 7 1.6 Thesis Structure ...................................................................................... 8 Chapter 2 Literature review .............................................................................. 11 2.1 Consumer Behavior and Analysis Methods ......................................... 11 2.2 Mystery Shopper .................................................................................. 12 2.3 Text Mining .......................................................................................... 17 2.4 Topic Modeling .................................................................................... 19 2.5 Social Media Mining ............................................................................ 21 2.6 Service Quality ..................................................................................... 23 Chapter 3 Research Method .............................................................................. 31 3.1 Text mining steps .................................................................................. 31 3.2 Analytic Procedure of Mystery Shoppers' ............................................ 35 3.3 PLS-SEM ............................................................................................. 36 Chapter 4 Empirical Study ................................................................................ 41 4.1 Data Acquisition and Preprocessing ..................................................... 41 4.1.1 Data Acquisition ................................................................................ 42 4.1.2 Data Preprocessing ............................................................................ 46 4.2 Model Development of Service Quality .............................................. 50 4.3 Explains the Results of the PLS-SEM Analysis ................................... 54 4.3.1 Measurement Model .......................................................................... 60 4.3.2 Structural Model ................................................................................ 68 4.3.3 Hypothesis Test Results..................................................................... 69 4.4 Explanations of the Results of the Mystery Shoppers Analysis........... 74 4.4.1 Measurement Model .......................................................................... 75 4.4.2 Structural Model ................................................................................ 86 4.4.3 Hypothesis Test Results..................................................................... 89 Chapter 5 Discussions ....................................................................................... 95 5.1 Implications of the Empirical Study Supported Results ...................... 95 5.2 Implications of the Empirical Study not Supported Results ................ 97 5.3 Mystery Shopper vs. Text Mining ........................................................ 99 5.4 Mobile service stores vs. Pet chain stores .......................................... 101 5.5 Managerial Implications ..................................................................... 103 5.6 Cross Comparisons ............................................................................. 105 5.7 Limitations ......................................................................................... 107 Chapter 6 Conclusions .................................................................................... 109 Reference .........................................................................................................111 Appendix ......................................................................................................... 125

    Abdous, M. h., & He, W. (2011). Using text mining to uncover students' technology‐related problems in live video streaming. British Journal of Educational Technology, 42(1), 40-49. https://doi.org/doi:10.1111/j.1467-8535.2009.00980.x
    Aburayya, A., Marzouqi, A., Alawadhi, D., Abdouli, F., & Taryam, M. (2020). An empirical investigation of the effect of employees’ customer orientation on customer loyalty through the mediating role of customer satisfaction and service quality. Management Science Letters, 10(10), 2147-2158.
    Adnan, K., Akbar, R., Khor, S. W., & Ali, A. B. A. (2020). Role and challenges of unstructured big data in healthcare. Data Management, Analytics and Innovation, 1042, 301-323.
    Afthanorhan, A., Awang, Z., Rashid, N., Foziah, H., & Ghazali, P. (2019). Assessing the effects of service quality on customer satisfaction. Management Science Letters, 9(1), 13-24. https://doi.org/10.5267/j.msl.2018.11.004
    Agyapong, G. K. (2011). The effect of service quality on customer satisfaction in the utility industry–A case of Vodafone (Ghana). International Journal of Business and Management, 6(5), 203-210. https://doi.org/doi:10.5539/ijbm.v6n5p203
    Al-Hasan, A., Yim, D., & Lucas, H. C. (2018). A tale of two movements: Egypt during the Arab spring and occupy wall street. IEEE Transactions on Engineering Management, 66(1), 84-97.
    Alalwan, A. A. (2018). Investigating the impact of social media advertising features on customer purchase intention. International Journal of Information Management, 42, 65-77. https://doi.org/doi:10.1016/j.ijinfomgt.2018.06.001
    Alalwan, A. A., Rana, N. P., Dwivedi, Y. K., & Algharabat, R. (2017). Social media in marketing: A review and analysis of the existing literature. Telematics and Informatics, 34(7), 1177-1190. https://doi.org/doi:10.1016/j.tele.2017.05.008
    Ali, B. J., Gardi, B., Jabbar Othman, B., Ali Ahmed, S., Burhan Ismael, N., Abdalla Hamza, P., Mahmood Aziz, H., Sabir, B. Y., Sorguli, S., & Anwar, G. (2021). Hotel service quality: The impact of service quality on customer satisfaction in hospitality. Ali, BJ, Gardi, B., Othman, BJ, Ahmed, SA, Ismael, NB, Hamza, PA, Aziz, HM, Sabir, BY, Anwar, G.(2021). Hotel Service Quality: The Impact of Service Quality on Customer Satisfaction in Hospitality. International Journal of Engineering, Business and Management, 5(3), 14-28. https://doi.org/https://dx.doi.org/10.22161/ijebm.5.3
    Appel, G., Grewal, L., Hadi, R., & Stephen, A. T. (2020). The future of social media in marketing. Journal of the Academy of Marketing Science, 48(1), 79-95.
    Asif, M., Ishtiaq, A., Ahmad, H., Aljuaid, H., & Shah, J. (2020). Sentiment analysis of extremism in social media from textual information. Telematics and Informatics, 48, 101345. https://doi.org/https://doi.org/10.1016/j.tele.2020.101345
    Ayeh, J. K., Au, N., & Law, R. (2013). Predicting the intention to use consumer-generated media for travel planning. Tourism management, 35, 132-143.
    Bashath, S., Perera, N., Tripathi, S., Manjang, K., Dehmer, M., & Streib, F. E. (2022). A data-centric review of deep transfer learning with applications to text data. Information Sciences, 585, 498-528.
    Behdioğlu, S., Acar, E., & Burhan, H. A. (2019). Evaluating service quality by fuzzy SERVQUAL: a case study in a physiotherapy and rehabilitation hospital. Total Quality Management & Business Excellence, 30(3-4), 301-319. https://doi.org/https://doi.org/10.1080/14783363.2017.1302796
    Beshley, M., Veselý, P., Pryslupskyi, A., Beshley, H., Kyryk, M., Romanchuk, V., & Kahalo, I. (2020). Customer-oriented quality of service management method for the future intent-based networking. Applied Sciences, 10(22), 8223. https://doi.org/https://doi.org/10.3390/app10228223
    Blessing, G., & Natter, M. (2019). Do mystery shoppers really predict customer satisfaction and sales performance? Journal of retailing, 95(3), 47-62.
    Brill, T. M., Munoz, L., & Miller, R. J. (2019). Siri, Alexa, and other digital assistants: a study of customer satisfaction with artificial intelligence applications. Journal of Marketing Management, 35(15-16), 1401-1436. https://doi.org/https://doi.org/10.1080/0267257X.2019.1687571
    Castillo, D., Canhoto, A. I., & Said, E. (2021). The dark side of AI-powered service interactions: exploring the process of co-destruction from the customer perspective. The Service Industries Journal, 41(13-14), 900-925.
    Cetin, G. (2020). Experience vs quality: predicting satisfaction and loyalty in services. The Service Industries Journal, 40(15-16), 1167-1182.
    Chen, C.-M., Chiu, M.-C., & Yen, C.-C. (2021). Using pzb to explore the impact of leisure farm service quality on the willingness to revisit: using satisfaction as an intermediary variable. International Journal of Organizational Innovation, 13(3), 12-15. https://doi.org/ https://doi.org/https://doi.org/10.1016/j.tele.2020.101346
    Chen, M.-Y., Liao, C.-H., & Hsieh, R.-P. (2019). Modeling public mood and emotion: Stock market trend prediction with anticipatory computing approach. Computers in Human Behavior, 101, 402-408. https://doi.org/doi:10.1016/j.chb.2019.03.021
    Cheng, X., Cao, Q., & Liao, S. S. (2022). An overview of literature on COVID-19, MERS and SARS: Using text mining and latent Dirichlet allocation. Journal of Information Science, 48(3), 304-320. https://doi.org/https://doi.org/10.1177/0165551520954674
    Cheo, R., Ge, G., Godager, G., Liu, R., Wang, J., & Wang, Q. (2020). The effect of a mystery shopper scheme on prescribing behavior in primary care: Results from a field experiment. Health Economics Review, 10(1), 1-19.
    Choi, D., Chung, C. Y., & Young, J. (2019). Sustainable online shopping logistics for customer satisfaction and repeat purchasing behavior: Evidence from China. Sustainability, 11(20), 5626.
    Choi, Y., Choi, M., Oh, M., & Kim, S. (2020). Service robots in hotels: understanding the service quality perceptions of human-robot interaction. Journal of Hospitality Marketing & Management, 29(6), 613-635.
    Chou, P.-F., & Wang, Y.-C. (2022). STUDY ON CUSTOMER SATISFACTION, STORE IMAGE AND RE-SERVICE QUALITY. EPRA International Journal of Economics, Business and Management Studies (EBMS), 9(8), 72-78.
    Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092.
    Ding, Y., Teng, F., Zhang, P., Huo, X., Sun, Q., & Qi, Y. (2021). Research on Text Information Mining Technology of Substation Inspection Based on Improved Jieba. 2021 International Conference on Wireless Communications and Smart Grid (ICWCSG),
    Djakasaputra, A., Wijaya, O., Utama, A., Yohana, C., Romadhoni, B., & Fahlevi, M. (2021). Empirical study of Indonesian SMEs sales performance in digital era: The role of quality service and digital marketing. International Journal of Data and Network Science, 5(3), 303-310. https://doi.org/10.5267/j.ijdns.2021.6.003
    Dutt, C. S., Hahn, G., Christodoulidou, N., & Nadkarni, S. (2019). What’s so mysterious about mystery shoppers? Understanding the qualifications and selection of mystery shoppers. Journal of Quality Assurance in Hospitality & Tourism, 20(4), 470-490. https://doi.org/https://doi.org/10.1080/1528008X.2018.1553118
    Eldor, L. (2021). Leading by doing: Does leading by example impact productivity and service quality? Academy of Management Journal, 64(2), 458-481.
    Galati, F., & Bigliardi, B. (2019). Industry 4.0: Emerging themes and future research avenues using a text mining approach. Computers in Industry, 109, 100-113.
    Ge, Y., Yuan, Q., Wang, Y., & Park, K. (2021). The structural relationship among perceived service quality, perceived value, and customer satisfaction-focused on starbucks reserve coffee shops in Shanghai, China. Sustainability, 13(15), 8633. https://doi.org/doi:10.3390/su13158633
    Gundecha, P., & Liu, H. (2012). Mining social media: A brief introduction. New Directions in Informatics, Optimization, Logistics, and Production, 2, 1-17. https://doi.org/doi:10.1287/educ.1120.0105
    Hair, J., & Alamer, A. (2022). Partial least squares structural equation modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. https://doi.org/doi:10.2753/MTP1069-6679190202
    Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433. https://doi.org/doi:10.1007/s11747-011-0261-6
    Hair Jr, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101-110.
    Hargittai, E. (2020). Potential biases in big data: Omitted voices on social media. Social Science Computer Review, 38(1), 10-24.
    Hayes, T. (2021). R-squared change in structural equation models with latent variables and missing data. Behavior Research Methods, 53(5), 2127-2157.
    He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464-472. https://doi.org/doi:10.1016/j.ijinfomgt.2013.01.001
    Hernon, P., & Saunders, L. (2018). What Happens to the Data Collected When Libraries Use Undercover Agents? Public Services Quarterly, 14(4), 293-308.
    Hu, L.-t., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424. https://doi.org/doi:10.1037/1082-989X.3.4.424
    Huang, P.-L., Lee, B. C., & Chen, C.-C. (2019). The influence of service quality on customer satisfaction and loyalty in B2B technology service industry. Total Quality Management & Business Excellence, 30(13-14), 1449-1465.
    Ibrahim, N. F., & Wang, X. (2019). A text analytics approach for online retailing service improvement: Evidence from Twitter. Decision Support Systems, 121, 37-50. https://doi.org/doi:10.1016/j.dss.2019.03.002
    Ingaldi, M. (2018). Overview of the main methods of service quality analysis. Production Engineering Archives, 18, 3.
    Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211. https://doi.org/doi:10.1007/s11042-018-6894-4
    Jeong, B., Yoon, J., & Lee, J.-M. (2019). Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. International Journal of Information Management, 48, 280-290. https://doi.org/doi:10.1016/j.ijinfomgt.2017.09.009
    Kamboj, S., Sarmah, B., Gupta, S., & Dwivedi, Y. (2018). Examining branding co-creation in brand communities on social media: Applying the paradigm of Stimulus-Organism-Response. International Journal of Information Management, 39, 169-185. https://doi.org/doi:10.1016/j.ijinfomgt.2017.12.001
    Kauffmann, E., Peral, J., Gil, D., Ferrández, A., Sellers, R., & Mora, H. (2019). Managing marketing decision-making with sentiment analysis: An evaluation of the main product features using text data mining. Sustainability, 11(15), 4235.
    Khan, A. G., Lima, R. P., & Mahmud, M. S. (2021). Understanding the service quality and customer satisfaction of mobile banking in Bangladesh: Using a structural equation model. Global Business Review, 22(1), 85-100.
    Khan, M. A. (2010). An empirical assessment of service quality of cellular mobile telephone operators in Pakistan. Asian Social Science, 6(10), 164.
    Kim, B., Yoo, M., & Yang, W. (2020). Online engagement among restaurant customers: The importance of enhancing flow for social media users. Journal of Hospitality & Tourism Research, 44(2), 252-277.
    Knechel, W. R., Thomas, E., & Driskill, M. (2020). Understanding financial auditing from a service perspective. Accounting, Organizations and Society, 81, 101080.
    Kohler, P., Larsen, A., Sila, J., Wilson, K., Abuna, F., Lagat, H., Owiti, G., Owens, T., Pintye, J., & Richardson, B. (2022). Mystery Shopper Assessment of PrEP Service Delivery Quality for Adolescent Girls and Young Women in Kenya: A Cross-sectional Study. Journal of the Association of Nurses in AIDS Care, 33(5), 534-541.
    Li, X., Zhang, A., Li, C., Ouyang, J., & Cai, Y. (2018). Exploring coherent topics by topic modeling with term weighting. Information Processing & Management, 54(6), 1345-1358.
    Lie, D., Sudirman, A., Efendi, E., & Butarbutar, M. (2019). Analysis of mediation effect of consumer satisfaction on the effect of service quality, price and consumer trust on consumer loyalty. International Journal of Scientific and Technology Research, 8(8), 421-428.
    Liu, C.-H. S., Su, C.-S., Gan, B., & Chou, S.-F. (2014). Effective restaurant rating scale development and a mystery shopper evaluation approach. International Journal of Hospitality Management, 43, 53-64.
    Lowndes, M., & Dawes, J. (2001). Do distinct SERVQUAL dimensions emerge from mystery shopping data? A test of convergent validity. The Canadian Journal of Program Evaluation, 16(2), 41.
    Makki, I., Alhalabi, W., & Adham, R. S. (2019). Using emotion analysis to define human factors of virtual reality wearables. Procedia Computer Science, 163, 154-164. https://doi.org/doi:10.1016/j.procs.2019.12.097
    Martí‐Parreño, J., Méndez‐Ibáñez, E., & Alonso‐Arroyo, A. (2016). The use of gamification in education: a bibliometric and text mining analysis. Journal of Computer Assisted Learning, 32(6), 663-676. https://doi.org/doi:10.1111/jcal.12161
    Mathe, K., & Slevitch, L. (2013). An exploratory examination of supervisor undermining, employee involvement climate, and the effects on customer perceptions of service quality in quick-service restaurants. Journal of Hospitality & Tourism Research, 37(1), 29-50. https://doi.org/doi: 10.1177/1096348011413590
    Mayrhofer, M., Matthes, J., Einwiller, S., & Naderer, B. (2020). User generated content presenting brands on social media increases young adults’ purchase intention. International Journal of Advertising, 39(1), 166-186.
    Mhlanga, O. (2018). Customer experiences and return patronage in airport hotels: Evidence from OR Tambo International Airport, South Africa. Acta Commercii, 18(1), 1-11. https://doi.org/doi:10.4102/ac.v18i1.471
    Mináriková, D., Fazekaš, T., Minárik, P., & Jurišová, E. (2019). Assessment of patient counselling on the common cold treatment at Slovak community pharmacies using mystery shopping. Saudi Pharmaceutical Journal, 27(4), 574-583.
    Mohamud, H. M., & Mwangi, P. (2021). Continuous replenishment and stock controlling on supply chain performance of retail chain stores in Nairobi County, Kenya. International Academic Journal of Procurement and Supply Chain Management, 3(2), 215-236. https://iajournals.org/articles/iajpscm_v3_i2_215_236.pdf
    Mohd Dzin, N. H., & Lay, Y. F. (2021). Validity and reliability of adapted self-efficacy scales in Malaysian context using PLS-SEM approach. Education Sciences, 11(11), 676.
    Mostafa, M. M. (2013). More than words: Social networks’ text mining for consumer brand sentiments. Expert Systems with Applications, 40(10), 4241-4251. https://doi.org/doi:10.1016/j.eswa.2013.01.019
    Murakami, R., & Chakraborty, B. (2022). Investigating the Efficient Use of Word Embedding with Neural-Topic Models for Interpretable Topics from Short Texts. Sensors, 22(3), 852.
    Newman, D., Bonilla, E. V., & Buntine, W. (2011). Improving topic coherence with regularized topic models. Advances In Neural Information Processing Systems, 24, 496-504. https://doi.org/doi:10.5555/2986459
    Ng, C., & Law, K. M. (2020). Investigating consumer preferences on product designs by analyzing opinions from social networks using evidential reasoning. Computers & Industrial Engineering, 139, 106180. https://doi.org/doi:10.1016/j.cie.2019.106180
    Nguyen, T. D., Lyall, G., Tran, A., Shin, M., Carroll, N. G., Klein, C., & Xie, L. (2022). Mapping Topics in 100,000 Real-Life Moral Dilemmas. Proceedings of the International AAAI. Conference on Web and Social Media, 16, 699-710.
    Niknejad, N., Ismail, W. B., Mardani, A., Liao, H., & Ghani, I. (2020). A comprehensive overview of smart wearables: The state of the art literature, recent advances, and future challenges. Engineering Applications of Artificial Intelligence, 90, 103529. https://doi.org/doi:10.1016/j.engappai.2020.103529
    Nolasco, D., & Oliveira, J. (2019). Subevents detection through topic modeling in social media posts. Future Generation Computer Systems, 93, 290-303. https://doi.org/doi:10.1016/j.future.2018.09.008
    O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673-690. https://doi.org/doi:10.1007/s11135-006-9018-6
    Olson, E. M., Olson, K. M., Czaplewski, A. J., & Key, T. M. (2021). Business strategy and the management of digital marketing. Business Horizons, 64(2), 285-293. https://doi.org/doi:10.1016/j.bushor.2020.12.004
    Orabi, M., Mouheb, D., Al Aghbari, Z., & Kamel, I. (2020). Detection of bots in social media: A systematic review. Information Processing & Management, 57(4), 102250. https://doi.org/doi:10.1016/j.ipm.2020.102250
    Ozbay, F. A., & Alatas, B. (2020). Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Statistical Mechanics and its Applications, 540, 123174. https://doi.org/doi:10.1016/j.physa.2019.123174
    Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50. https://doi.org/doi:10.1177/002224298504900403
    Park, S. B., Kim, J., Lee, Y. K., & Ok, C. M. (2020). Visualizing theme park visitors’ emotions using social media analytics and geospatial analytics. Tourism management, 80, 104127. https://doi.org/doi:10.1016/j.tourman.2020.104127
    Parlar, T., Ozel, S., & Song, F. (2019). Analysis of data pre-processing methods for sentiment analysis of reviews. Computer Science, 20, 6.
    Pinnegar, J. K., & Murray, J. M. (2019). Understanding the United Kingdom marine aquarium trade–a mystery shopper study of species on sale. Journal of Fish Biology, 94(6), 917-924. https://doi.org/doi:10.1111/jfb.13941
    Purwanto, A., & Sudargini, Y. (2021). Partial least squares structural squation modeling (PLS-SEM) analysis for social and management research: a literature review. Journal of Industrial Engineering & Management Research, 2(4), 114-123.
    Rabitti, M., & Paglietti, M. C. (2022). A Matter of Time. Digital-Financial Consumers’ Vulnerability in the Retail Payments Market. European Business Law Review, 33(4) , 581-606.
    Radzi, A. R., Rahman, R. A., & Almutairi, S. (2022). Modeling COVID-19 Impacts and Response Strategies in the Construction Industry: PLS–SEM Approach. International Journal of Environmental Research and Public Health, 19(9), 5326.
    Resch, B., Usländer, F., & Havas, C. (2018). Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment. Cartography and Geographic Information Science, 45(4), 362-376.
    Saga, R., & Kunimoto, R. (2016). LDA-based path model construction process for structure equation modeling. Artificial Life and Robotics, 21(2), 155-159. https://doi.org/doi:10.1007/s10015-016-0270-0
    Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2017). A survey of text mining in social media: facebook and twitter perspectives. Advances in Science Technology and Engineering Systems Journal, 2(1), 127-133. https://doi.org/doi:10.25046/aj020115
    Salloum, S. A., Al-Emran, M., & Shaalan, K. (2017). Mining social media text: Extracting knowledge from Facebook. International Journal of Computing and Digital Systems, 6(02), 73-81. https://doi.org/doi:10.12785/ijcds/060203
    Sanchez-Franco, M. J., Cepeda-Carrion, G., & Roldan, J. L. (2019). Understanding relationship quality in hospitality services: A study based on text analytics and partial least squares. Internet Research. https://doi.org/doi:10.1108/IntR-12-2017-0531
    Schindler, R. M., & Bickart, B. (2005). Published word of mouth: Referable, consumer-generated information on the Internet. Understanding and Influencing Consumer Behavior in the Virtual World, 32, 35-61.
    Shen, C.-w., Chen, M., & Wang, C.-c. (2019). Analyzing the trend of O2O commerce by bilingual text mining on social media. Computers in Human Behavior, 101, 474-483. https://doi.org/doi:10.1016/j.chb.2018.09.031
    Sherifi, I., & Senja, E. (2018). Internet usage on mobile devices and their impact on evolution of informative websites in Albania. Birmingham, UK:Progressive Academic Publishing. European Journal of Business, 3(6), 37-43.
    Shiau, S. J., Huang, C.-Y., Yang, C.-L., & Juang, J.-N. (2018). A derivation of factors influencing the innovation diffusion of the OpenStreetMap in STEM education. Sustainability, 10(10), 3447.
    Shiau, W.-L., & Chau, P. Y. (2016). Understanding behavioral intention to use a cloud computing classroom: A multiple model comparison approach. Information & Management, 53(3), 355-365. https://doi.org/doi:10.1016/j.im.2015.10.004
    Skoric, M. M., Liu, J., & Jaidka, K. (2020). Electoral and public opinion forecasts with social media data: A meta-analysis. Information, 11(4), 187.
    Slevitch, L., Mathe, K., Karpova, E., & Scott‐Halsell, S. (2013). “Green” attributes and customer satisfaction: Optimization of resource allocation and performance. International Journal of Contemporary Hospitality Management, 25(6), 802-822. . https://doi.org/doi:10.1108/IJCHM-07-2012-0111
    Tarantola, C., Vicard, P., & Ntzoufras, I. (2012). Monitoring and improving Greek banking services using Bayesian Networks: An analysis of mystery shopping data. Expert Systems with Applications, 39(11), 10103-10111. https://doi.org/doi:10.1016/j.eswa.2012.02.060
    Teso, E., Olmedilla, M., Martínez-Torres, M., & Toral, S. (2018). Application of text mining techniques to the analysis of discourse in eWOM communications from a gender perspective. Technological Forecasting and Social Change, 129, 131-142. https://doi.org/doi:10.1016/j.techfore.2017.12.018
    Tien, N. H., Diem, P. T., Van On, P., Anh, V. T., Van Dat, N., Hung, N. T., & Tam, B. Q. (2021). The formation and development of CRM system at Thien Hoa electronics supermarket in Vietnam. International Journal of Research and Growth Evaluation, 2, 4.
    Timokhina, G., Prokopova, L., Gribanov, Y., Zaitsev, S., Ivashkova, N., Sidorchuk, R., Skorobogatykh, I., Shishkin, A., & Musatova, Z. (2021). Digital Customer Experience Mapping in Russian Premium Banking. Economies, 9(3), 108. https://doi.org/https://doi.org/10.3390/economies9030108
    Tsironis, L. K. (2018). Identifying Customer Satisfaction: The Mystery Customer Approach. International Journal of Knowledge-Based Organizations (IJKBO), 8(3), 1-27.
    Urban, W. (2013). Perceived quality versus quality of processes: a meta concept of service quality measurement. The Service Industries Journal, 33(2), 200-217. https://doi.org/doi:10.1080/02642069.2011.614337
    Valls Martínez, M. d. C., & Ramírez-Orellana, A. (2019). Patient satisfaction in the Spanish national health service: Partial least squares structural equation modeling. International journal of environmental research and public health, 16(24), 4886. https://doi.org/doi:10.3390/ijerph16244886
    Vayansky, I., & Kumar, S. A. (2020). A review of topic modeling methods. Information Systems, 94, 101582.
    Voskolovich, N. A., Kovaleva, T. V., Markin, M. I., Demin, S. S., & Zinchenko, L. A. (2016). The development of the enterprise client-orientated management instruments of the tourist branch. International review of management and marketing, 6(6), 63-70.
    Wang, H., Wang, J., Zhang, Y., Wang, M., & Mao, C. (2019). Optimization of Topic Recognition Model for News Texts Based on LDA. J. Digit. Inf. Manag., 17(5), 257.
    Wang, L., Wang, X.-k., Peng, J.-j., & Wang, J.-q. (2020). The differences in hotel selection among various types of travellers: A comparative analysis with a useful bounded rationality behavioural decision support model. Tourism management, 76, 103961. https://doi.org/doi:10.1016/j.tourman.2019.103961
    Wang, Y.-C. (2020). Word Segmentation for Classical Chinese Buddhist Literature. Journal of the Japanese Association for Digital Humanities, 5(2), 154-172.
    Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism management, 58, 51-65. https://doi.org/doi:10.1016/j.tourman.2016.10.001
    Yang, C.-L., Huang, C.-Y., & Hsiao, Y.-H. (2021). Using social media mining and pls-sem to examine the causal relationship between public environmental concerns and adaptation strategies. International journal of environmental research and public health, 18(10), 5270.
    Yang, Y., & Wang, F. (2021). Author topic model for co-occurring normal documents and short texts to explore individual user preferences. Information Sciences, 570, 185-199.
    Yaoyuneyong, G., Whaley, J. E., Butler, R. A., Williams, J. A., Jordan Jr, K. L., & Hunt, L. (2018). Resort mystery shopping: A case study of hotel service. Journal of Quality Assurance in Hospitality & Tourism, 19(3), 358-386. https://doi.org/doi:10.1080/1528008X.2017.1418702
    Yuan, K.-H., & Deng, L. (2021). Equivalence of partial-least-squares SEM and the methods of factor-score regression. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 557-571.
    Zeithaml, V. A., Parasuraman, A., & Berry, L. L. (1985). Problems and strategies in services marketing. Journal of Marketing, 49(2), 33-46. https://doi.org/doi:10.1177/002224298504900203

    無法下載圖示 本全文未授權公開
    QR CODE