研究生: |
楊凱琳 |
---|---|
論文名稱: |
建構中學生對幾何證明閱讀理解的模式 |
指導教授: | 林福來 |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 211 |
中文關鍵詞: | 幾何證明 、閱讀理解 |
論文種類: | 學術論文 |
相關次數: | 點閱:462 下載:187 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為:(1) 探討中學生在幾何證明閱讀理解認知面向上的特徵,(2) 探討知識和邏輯對中學生幾何證明閱讀理解的影響。希望基於實徵研究的結果,除了在理論上擴充數學理解的認知發展,也在實務上提出可統整獲取知識、建立邏輯與理解數學證明的假設性學習路徑。本研究係採質與量兼併的方式進行幾何證明閱讀理解的分析,希望透過調查研究法探討中學生在幾何證明閱讀理解的實際表現和自我評估,以及瞭解知識和邏輯推理因素對於此表現的解釋力。另一方面,也希望透過訪談研究法對於學生評析幾何論證有效性的思考特徵作進一步的探討。研究的主要結果為:
一、幾何證明閱讀理解的面向包含:表層理解、邏輯定位理解、摘要統整理解、一般性理解、應用推廣理解和賞析理解。
二、邏輯定位理解在學生實際表現和自我評估上佔有不同的地位。學生主要以偏向評估表層理解的標準來評估「為什麼」某些步驟是正確的,但當以區分邏輯和認識上的真以及辨識所引用的性質或事實來測量學生是否真正理解「為什麼」時,其表現結果和表層理解表現的相對關係就低於學生在這兩個面向上自我評估的相對關係。
三、以知識和概念情境中直接確認邏輯二個變項預測國三學生在一階段幾何證明閱讀理解表現,結果可以解釋總變異的54%;也以這二個變項預測國三學生在二階段幾何證明閱讀理解表現,結果可以解釋總變異的32%。
四、中學生評析幾何論證有效性的思考特徵有「不當特殊化論證過程」以及「過度一般化論證過程」。可能造成不當特殊化論證過程的認知方式有:(1)以數字檢驗形式證明;(2)受限於未畫出來的圖形;(3)把例子中的某種規律視為前提。可能造成過度一般化論證過程的認知方式有:(1)擴充演算法或動態圖形的有效性; (2)強化圖形或數字的效用;(3)開放前提或結論的位置;(4)增加前提或結論的強度。
五、除了知識和邏輯外,本研究進一步闡述述三種妨礙學生進一步理解幾何論證的因素:(1)未意識到自己誤解的可能性;(2)未區辨證明與解說的不同;(3)排斥或不喜歡不瞭解的資訊。
六、幾何證明閱讀理解層次包含:表層理解、辨識元件理解、鏈結元件理解和膠囊化理解。分析各理解層次間的實際表現,發現幾何證明閱讀理解層次的發展可能有兩類,一是從表層理解、辨識元件理解、鏈結元件理解至膠囊化理解層次循序漸進地發展,本研究稱為「關係性理解型態」;二是從表層理解跳至膠囊化理解層次,再回到辨識元件理解和鏈結元件理解間的發展,本研究稱為「工具性理解型態」。
根據上述的結果,本研究對於幾何論證的教學提出一個關於獲得知識、建立邏輯與解讀幾何論證間的假設性學習路徑,如下圖。以概念心像為學習起點,分別經由表層理解、辨識元件理解、鏈結元件理解發展至膠囊化理解,本研究所建議的學習活動有:閱讀策略的引導,情境中邏輯判斷的練習,下定義過程的經驗,局部推理的嘗試,連結概念情境和記號情境的邏輯判斷,自我評估和實際表現的衝突,圖文互相轉換的協調,應用導向的論證問題。
中文部份
李宜芬(2002)。國三學生突破因附圖造成之論證障礙的學習歷程之研究。國立臺灣師範大學數學系碩士班碩士學位論文,未出版,台北市。
林清山、程炳林(1995)。國中生自我調整學習因素與學習表現之關係暨自我調整的閱讀理解教學策略效果之研究。教育心理學報,第28期,15-58。
林政輝(2002)。國中生討論數樣式關係時表達理由能力之成長探究。國立臺灣師範大學數學系碩士班碩士學位論文,未出版,台北市。
張春興(1998)。張氏心理學辭典。台北市:東華書局。
教育部(1999)。國民教育九年一貫課程綱要(草案)-數學學習領域。
梁蕙如(2003)。國三學生數型命題論證類型及其改變之教學探究。國立臺灣師範大學數學系碩士班碩士學位論文,未出版,台北市。
程炳林(2001)。動機、目標設定、行動控制、學習策略之關係:自我調整學習歷程模式之建構及驗證。師大學報:教育類,第46卷第一期,67-92。
曾陳密桃(1990). 國民中小學生的後設認知及其閱讀理解之相關研究。國立政治大學教育研究所博士論文,台北市。
龍協濤(1997)。讀者反應理論。台北:揚智出版社。
西文部份
Balacheff, N. (1987). Processus de Prevue et Situations de Validation. Educational Studies in Mathematics, 18(2), 147-176.
Balacheff, N. (2002). The Researcher Epistemology: A deadlock for Educational Research on Proof. Proceeding of International Conference on Mathematics: Understanding Proving and Proving to understand (pp.23-44).
Black, J. (1985). An Exposition on Understanding Expository Text. In B. Britton & J. Black (eds.), Understanding expository text. Hillsdale, NJ.: Erlbaum.
Boero, P.; Garuti, R. & Mariotti, M. A. (1996). Some Dynamic Mental Process Underlying Producing and Conjectures, PME20, 2, 121-128.
Bollen, K. A. (1989). Structural equations with latent variables. NY: Wiley.
Borasi, R. & Siegel, M. (2000). Reading counts: Expanding the role of reading in mathematics classroom. NY: Teachers College Press.
Borasi, R., Siegel, M., Fonzi, J. & Smith, C. (1998). Using Transactional Reading Strategies to Support Sense-Making and Discussion in Mathematics Classrooms: An Exploratory Study. Journal for Research in Mathematics Education, 29, 275-305.
Carner, R.L. (1963). Levels of Questioning. Education, 83, 546-550.
Carpenter, T.P., Corbitt, M.K., Kepner, H.S., Lindquist, M.M., & Reys, R.E. (1980). Results of the second National Assessment of Educational Progress mathematic assessment: Secondary school. Mathematics Teacher, 73, 329-338.
Chazan, D. (1993). High School Geometry Students’ Justification for their Views of Empirical Evidence and Mathematical Proof. Educational Studies in Mathematics 24, 359-387.
Cheng, P. W. & Holyoak, K. J. (1985). Pragmatic Reasoning Schemas. Cognitive Psychology, 17, 391-416.
Clements, D. H. & Battista, M.T. (1992). Geometry and spatial reasoning. In D. A. Grows (Ed.), Handbook of research on mathematics teaching and learning(Chap.18). New York: Macmillan Publishing Company.
Cocking, R.R. & Mestre, J.P. (1988). Linguistic and cultural influence on learning mathematics. New Jersey: Lawrence Erlbaum Associates.
Cook, L. K. & Mayer, R. E. (1988). Teaching Readers about the structure of sciences. Journal of Verbal Learning and Verbal Behavior, 19, 96-109.
Corno, L. (1989). Self-regulated Learning: A Volitional Analysis. In B. J. Zimmerman & D. H. Schunk(Eds.), Self-regulated Learning and Academic Achievement: Theory, Research, and Practice (pp.111-142). NY: Springer-Verlag.
Davis, P. J. & Hersh, R. (1981). The mathematical experience. Boston: Birkhauser.
Dreyfus, T. (1991). Advanced Mathematical Thinking Processes. In D. Tall(Ed.), Advanced Mathematical Thinking (pp.25-53). Netherlands: Kluwer Academic Publishers.
Duval, R. (1991). Structue du Raisonnement Deductif et Apprentissage de la Demonstation. Educational Studies in Mathematics, 22(3), 233-263.
Duval, R. (1995). Geometrical Pictures: Kinds of Representation and Specific Processing. In R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with computers in Mathematics Education (pp.142-127). Berlin: Springer(NATO ASI Series n 138).
Duval, R. (1998). Geometry from a cognitive of view. Perspectives on the Teaching of Geometry for the 21st century. An ICMI Study. (pp.37-52).
Duval, R. (1999). Questioning argumentation. International Newsletter on the Teaching and Learning of Mathematical Proof.
Duval, R. (2000). Basic issues for research in mathematics education. PME24, 1, 55-69.
Duval, R. (2002). Proof Understanding in Mathematics: What Ways for Students? Proceeding of International Conference on Mathematics: Understanding Proving and Proving to understand (pp.61-77).
Fawcett, H. P. (1938). The nature of proof. VA: The National Council of Teachers of Mathematics, INC.
Fischbein, E. (1987). Intuition in science and mathematics(pp.143-153). Dordrecht, The Netherlands: Reidel.
Fischbein, E. (1996). The Psychological Nature of Concepts. In H. Mansfield, N. A. Pateman, & N. Bednarz (Eds.), Mathematics For Tomorrow’s Young Children(pp.105-110). London: Kluwer Academic Publishers.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.
Freudenthal, H. (1991). Revisiting Mathematics Education. Dordrecht: Kluwer Academic Publishers.
Gagn’e, E.D., Yekovich, C. W. & Yekovich, F. R. (1993). The cognitive psychology of school learning (2nd ed.). NY: Harper Collins College Publishers.
Garner, R. Metacognition and Executive Control. In R.B. Ruddell, M.R. Ruddell & H. Singer (eds.), Theoretical Models and Processes of Reading. Newark, Delaware: International Reading Association, 715-732.
Godino, J. D. & Batanero, C. (1998). Clarifying the Meaning of Mathematical Objects as a Priority Area for Research in Mathematics Education. In A. Sierpinska & J. Kilpartick (Eds.), Mathematics education as a research domain : A search for identity, (pp.87-104). Dordrecht, Netherlands: Kluwer Academic Publishers.
Govier, T. (1992). A practical study of argument. CA: Wadsworth Publishing Company.
Gray, W. D. & Orasnu, J. M. (1987). Transfer of cognitive skills. In S. M. Cormier & J. D. Hagman (eds.), Transfer of learning : Contemporary research and applications. NY: Academic Press.
Hanna, G. (1989). Proofs that Prove and Proofs that Explain. PME13, 2, 45-51.
Hanna, G. (1990). Some Pedagogical Aspects of Proof. Interchange, 21(1), 6-13.
Harel, G. & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In E. Dubinsky, A. Schoenfeld & J. Kaput (eds.), Research in collegiate mathematics education, 3, 234-283.
Hayes, J.R. & Flower, L.S. (1980). Identifying the Organization of Writing Processes. In L.W. Gregg & E.R. Steinberg (eds.), Cognitive process in writing. Hillsdale, NJ: Lawrence Erlbaum Associates.
Healy L. & Hoyles, C. (2000). A Study of Proof Conceptions in Algebra. Journal for Research in Mathematics Education, 31(4), 396-428.
Hiebert, J. & Carpenter, T. P. (1992). Learning and Teaching with understanding. In D. A. Grouws (ed.), Handbook of research on mathematics teaching and learning. NY: Macmillan Publishing Company.
Hoyles, C. (1997). The Curricular Shaping of Students’ Approaches to Proof. For the Learning of Mathematics ,17(1), 7-16.
Hoyles,C. & Healy,L.(1999) Linking Informal Argumentation with Formal Proof Through Computer-Integrated Teaching Experiences. In Zaslavsky(ed.), Proceedings of the 23nd conference of the International Group for the Psychology of Mathematics Education, Haifa, Israel.
Hunkins, F.P. (1972). Questioning strategies and techniques. Boston: Allyn and Bacon.
Jansson, L.C. (1986). Logical Reasoning Hierarchies in Mathematics. Journal for Research in Mathematics Education, 17(1), 3-20.
Johnson-Laird, P. N., Legenzi, P., Legenzi, M. S. (1972). Reasoning and a Sense of Reality. British Journal of Psychology, 63, 395-400.
Kaylani, C. (1996). The Influence of Gender and Motivation on EFL Learning Strategy Use in Jordan. In R. Oxford (ed.), Language Learning Strategies around the World: Cross-Cultural Perspectives (pp.75-88). Honolulu, HI: University of Hawaii, Second Language Teaching and Curriculum Center.
Kitcher, P. (1984). The nature of mathematical knowledge. NY: Oxford University Press.
Laborde, C. (etc.) (1990). Language and Mathematics. In P. Nesher. & J. Kilpatrick (Eds.), Mathematics and cognition (pp.70-95). NY: Cambridge University Press.
Layder D. (1998). Sociological practice: Linking theory and social research. London: Sage.
Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, MA: Harvard University Press.
Lin, F.L. & Yang, K.L. (2002). Defining a Rectangle under a Social and Practical Setting by Two Seventh Graders. Paper presented in PME 26, Norwich, UK, July 21-26.
Mandle, H. & Levin, J. R. (1989). Knowledge acquisition from text and pictures. Amsterdam: North-Holland.
Margliano, J.P., Zwaan, R.A. & Graesser, A.C. (1998). The Role of Situational Continuity in Narrative Understanding. In S.R. Goldman & H. van Oostendorp (eds.), The construction of mental representations during reading (pp 219-245). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Maxwell, J. (1996). Qualitative research design: An interactive approach. Newbury Park, CA: Sage.
Meyer, B. & Rice, G. (1984). The Structure of Text. In P. Pearson (ed.), Handbook of reading research. NY: Longman.
Michener, E.R. (1978). Understanding understanding mathematics. Cognitive Science, 2, 361-383.
Millis, K.K., King, A. & Kim, H.J. (2000). Updating Situational Models from Descriptive Texts: A Text of the Situational Operator Model. Discourse Processes, 30(3), 201-236.
Miyazaki, M. (2000). Levels of Proof in Lower Secondary School Mathematics: As Steps from an Inductive Proof to an Algebraic Demonstration. Educational Studies in Mathematics, 41, 47-68.
Oxford, R. (1989). The Best and the Worst: an Exercise to Tap Perceptions of Language-Learning Experiences and Strategies. Foreign Language Annuals, 22, 447-54.
Palinscar, A.S. & Brown, D.A. (1984). Reciprocal Teaching of Comprehension Fostering and Comprehension Monitoring Activities. Cognition and Instruction, 1, 117-175.
Palinscar, A.S. & Brown, D.A. (1987). Enhancing Instructional Theme through Attention to Metacognition. Journal of Learning Disabilities, 20(2), 66-75.
Phakiti, A. (2003). A Closer Look at the Relationship of Cognitive and Metacognitive Strategy Use to EFL Reading Achievement Test Performance. Language Testing, 20(1), 26-56.
Pimm, D. (1987). Speaking mathematically: communication in the mathematics classroom. London: Routledge & Kegan Paul.
Paivio, A. (1986). Mental representations: A dual coding approach. Oxford: Oxford University Press.
Polya, J. (1957). How to solve it. Princeton, NJ: Princeton University.
Rayner, S. & Riding, R. J. (1997). Towards a categorization of cognitive styles and learning styles. Educational Psychology, 17, 5-28.
Riding, R. J. & Cheema, I. (1991). Cognitive styles: An overview and integration. Educational Psychology, 11, 193-215.
Rummelhart, D.E. (1980). Schemata: The Building Blocks of Cognition. In R.J. Spiro, B.C. Bruce & W.F. Brewer (eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.
Selden, J. & Selden, A. (1995). Unpacking the Logic of Mathematical Statements. Educational Studies in Mathematics, 29(2), 123-151.
Selden, A. & Selden, J. (2003). Validations of Proofs Considered as Texts: Can Undergraduates Tell Whether an Argument Proves a Theorem? Journal for Research in Mathematics Education, 34(1), 4-36.
Shard, H. & Rothery, A. (1984). Children reading mathematics. London: John Murray Publishers.
Shoenfeld, A. H. (1985). Mathematical Problem Solving. NY: Academic Press.
Skemp, R. (Ed.). (1982). Understanding the symbolism of mathematics [Special issue]. Visible Language, 16(3).
Tabachneck-Schijf, H. and Simon, H.A. (1996). Alternative Representations of Instructional Material. In D. Peterson (Ed.), Forms of representation. UK: Intellect Books Ltd.
Tall, D.(1989). The nature of mathematical proof. Mathematics Teaching, 127, 28-31.
Thom, R. (1972). Modern Mathematics: Does it Exist? In A. G. Howson (Ed.), Developments in mathematical education: Proceeding of the Second ICME (pp. 194-209). Cambridge: Cambridge University Press.
Toulmin, S. E. (1958). The use of arguments. Cambridge University Press.
Van Den Broek, P., Flecher, C.T. & Risden, K. (1993). Investigating of Inference Processes in Reading: A Theoretical and Methodological Integration. Discourse Processes, 16, 169-180.
Van Dijk, T. A. & Kintsch, W. (1983). Strategies of discourse comprehension. San Diego, CA: Academic Press.
Vinner, S. (1983). Concept Definition, Concept Image and the Notion of Function. International Journal of Mathematics Education in Science and Technology, 14, 239-305.
Vinner, S. (1991). The Role of Definitions in Teaching and Learning Mathematics. In D. Tall(Ed.), Advanced Mathematical Thinking (pp.65-81). Netherlands: Kluwer Academic Publishers.
Wittmann, E. C. (1998). Mathematics Education as a ‘Design Science’. In A. Sierpinska & J. Kilpartick (Eds.), Mathematics Education as a Research Domain : A Search for Identity, (pp.87-104). Dordrecht, Netherlands: Kluwer Academic Publishers.