簡易檢索 / 詳目顯示

研究生: 林志穎
Chih-Ying Lin
論文名稱: On the Diophantine Equations x^2+y^2+z^2=kxyz
指導教授: 洪有情
Hung, Yu-Ching
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 16
中文關鍵詞: 馬可夫方程式
英文關鍵詞: Markoff Equation
論文種類: 學術論文
相關次數: 點閱:124下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文中,我們就k值來探討丟番圖方程x^2+y^2+z^2=kxyz之解的情形:
    (1)當k不為1和3時,此方程式無正整數解。
    (2)當k=1時,有無限多組正整數解。若將解表為(a,b,c),a小於或等於b小
    於或等於c,則
    ① 當c=3p^n或c=6p^n時,有解必唯一。
    ② 若c為奇數,當c-2=p^n或c+2=p^n時,有解必唯一。
    ③ 若c為偶數,當c-2=4p^n或c+2=8p^n時,有解必唯一。
    (3)當k=3時,即為大家熟知的馬可夫方程式。

    In this paper, we discuss the positive integers solutions of the Diophantine equations x^2+y^2+z^2=kxyz.
    (1)When k doesn't equal to 1 and 3, the equations have no
    positive integers solutions.
    (2)When k=1, the equation has infitely many positive
    integers solutions. We can let (a,b,c) be the solution
    and arrange its entries in ascending order.
    ①The solution is determined uniquely by c when c=3p^n
    or c=6p^n.
    ②If c is odd, the solution is determined uniquely by c
    when c-2=p^n or c+2=p^n .
    ③If c is even, the solution is determined uniquely
    by c when c-2=4p^n or c+2=8p^n.
    (3)When k=3, it is the well known Markoff equation.

    Contents 1 Introduction.....1 2 The case for $k\geq{4}$.....3 3 The case for k=2.....4 4 The case for k=1.....5 4.1 The tree structure of solutions.....5 4.2 Markoff Matrix.....5 4.3 Proof of Theorem 1.1.....11 4.4 Properties of the solutions.....12 4.5 Proof of Theorem 1.2.....13 5 The case for k=3.....16

    [1] Arthur Baragar, On the unicity conjecture for Markoff numbers, Canad. Math. Bull. 39 (1996), no. 1. 3-9.
    [2] J. O. Button, The uniqueness of the prime Markoff numbers, J. London Math. Soc. (2) 58 (1998), no. 1, 9-17.
    [3] H. Cohn, Approach to Markoff's minimal forms through modular functions, Annals of Math. (2) 61 (1955), no. 1, 1-12.
    [4] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and
    Mathematical Physics}, 45, Cambridge University Press, New York, 1957.
    [5] G. Frobenius, Uber die Markoffschen Zhalen, Preuss. Akad. Wiss. Sitzungsberichte, 1913, 458-487, or Ges. Abh., vol. III, Springer-Verlag, Berlin. 1968, pp. 589-627.
    [6] Hurwitz, A, Uber die Aufgabe der unbestimmten Analysis, Arch. Math. Phys. (3) 11 (1907), 185-196.
    [7] Mong-Lung Lang and Ser Peow Tan, A simple proof of Markoff conjecture for prime powers, arXiv:math GT0508443.
    [8] Paul Schmutz, Systoles of arithmetic surfaces and the Markoff spectrum, Math. Ann. 305 (1996), no. 1, 191-203.
    [9] Y. Zhang, An elementary proof of Markoff Conjecture for prime powers, preprint, arXiv:math, NT/0606283.
    [10] Y. Zhang, Congruence and uniqueness of certain Markoff numbers, preprint, arXiv:math, NT/0612620.

    QR CODE