研究生: |
黃堃愷 Huang, Kun-Kai |
---|---|
論文名稱: |
三核苷酸重複序列對 SSB 的載入和再分佈之影響 Influence of Trinucleotide Repeat Sequences to the SSB Loading and Redistribution |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 單分子螢光共振能量轉移 、單股 DNA 結合蛋白 、CTG 重複序列 、三核苷酸重複序列 |
英文關鍵詞: | single-molecule fluorescence resonance energy transfer (smFRET), Single-stranded DNA binding protein (SSB), Trinucleotide repeat (TNR) expansions, CTG repeat sequence |
DOI URL: | http://doi.org/10.6345/NTNU201900450 |
論文種類: | 學術論文 |
相關次數: | 點閱:237 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三核苷酸重複序列 (Trinucleotide repeat, TNR) 的擴張是導致許多神經退化性疾病的原因,而三核苷酸重複序列通常會折疊成二級結構,如:髮夾型結構,因此會在 DNA 進行複製、重組和修復的過程時中斷蛋白質的運作機制,並且這也被認為是造成錯誤擴增序列的主要原因。
單股 DNA 結合蛋白 (Single-stranded DNA binding protein, SSB) 是能夠在上述過程中結合單股 DNA 的主要蛋白,同時可以解開二級結構的能力,在這裡,我們使用大腸桿菌 SSB (Escherichia coli SSB, EcoSSB) 和 CTG 重複序列作為模型系統,並利用單分子螢光共振能量轉移光譜學 (single-molecule fluorescence resonance energy transfer, smFRET) 來研究三核苷酸重複序列對單股 DNA 結合蛋白的載入和重新分佈之影響。我們發現,相對於隨機捲曲的單股 DNA,三核苷酸重複序列的髮夾型結構嚴重阻礙單股 DNA 結合蛋白的負載;另一方面,當單股 DNA 結合蛋白負載到含有 CTG 重複序列和短單股 DNA的末端時,其過程中大約歷經數十分鐘的中間態而最後達到反應平衡,最後平衡的結構仍具有高度動態的結構變化,這表明單股 DNA 結合蛋白可以部分解開 CTG 重複序列的髮夾型結構,並在其當中進行擴散以重新分佈。
Trinucleotide repeat (TNR) expansions are responsible for many neurodegenerative disorders. TNRs usually fold into secondary structures such as hairpins, which interrupt protein machinery during DNA replication, recombination, and repair processes, and are believed to be the primary cause for the error-prone expansion. Single-stranded DNA binding protein (SSB), an essential protein that binds single-stranded DNA (ssDNA) during the abovementioned processes, has been shown the capability of unwinding secondary structures.
Here, we use Escherichia coli SSB (EcoSSB) and CTG repeat sequences as a model system to investigate the influence of TNR hairpin structure for the SSB loading and redistribution, utilizing single-molecule fluorescence resonance energy transfer (smFRET) spectroscopy. We found that TNR hairpins severely impede the loading of SSB compared to random-coiled ssDNA. On the other hand, when EcoSSB is preloaded onto the assay containing CTG hairpin and a short ssDNA loading end, it reaches the equilibrated configuration through an intermediate state in the order of tens minutes. The equilibrated configuration is highly dynamic, suggesting EcoSSB can partially unwind CTG hairpin and diffuse along it.
[1] Wojciechowska M, Krzyzosiak WJ. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet 2011;20:3811–21.
[2] McMurray CT. Mechanisms of trinucleotide repeat instability during human development. Nature Reviews Genetics 2010;11:786–99.
[3] Liu G, Chen X, Bissler JJ, Sinden RR, Leffak M. Replication-dependent instability at (CTG)•(CAG) repeat hairpins in human cells. Nature Chemical Biology 2010;6:652–9.
[4] Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, et al. Invited Review: Decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015;41:109–34.
[5] Nuclear RNA foci from C9ORF72 expansion mutation form paraspeckle-like bodies | Journal of Cell Science n.d. https://jcs.biologists.org/content/132/5/jcs224303.long (accessed July 11, 2019).
[6] Walsh JM, Beuning PJ. Synthetic Nucleotides as Probes of DNA Polymerase Specificity. Journal of Nucleic Acids 2012.
[7] Mirkin SM. Expandable DNA repeats and human disease. Nature 2007;447:932–40.
[8] Richard G-F, Kerrest A, Dujon B. Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiol Mol Biol Rev 2008;72:686–727.
[9] Repeat instability: mechanisms of dynamic mutations | Nature Reviews Genetics n.d. https://www.nature.com/articles/nrg1689 (accessed June 27, 2019).
[10] 倪丞緯。2017。以單分子光譜觀測 CTG 重複序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學所。
[11] Chi LM, Lam SL. Structural roles of CTG repeats in slippage expansion during DNA replication. Nucleic Acids Res 2005;33:1604–17.
[12] Delagoutte E, Goellner GM, Guo J, Baldacci G, McMurray CT. Single-stranded DNA-binding Protein in Vitro Eliminates the Orientation-dependent Impediment to Polymerase Passage on CAG/CTG Repeats. J Biol Chem 2008;283:13341–56.
[13] Grieb MS, Nivina A, Cheeseman BL, Hartmann A, Mazel D, Schlierf M. Dynamic stepwise opening of integron attC DNA hairpins by SSB prevents toxicity and ensures functionality. Nucleic Acids Res 2017;45:10555–63.
[14] Roy R, Kozlov AG, Lohman TM, Ha T. Dynamic Structural Rearrangments Between DNA Binding Modes of E. coli SSB Protein. J Mol Biol 2007;369:1244–57.
[15] Bujalowski W, Lohman TM. Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 1986;25:7799–802.
[16] Lohman TM, Ferrari ME. Escherichia Coli Single-stranded DNA-Binding Protein: Multiple DNA-Binding Modes and Cooperativities. Annual Review of Biochemistry 1994;63:527–70.
[17] Suksombat S, Khafizov R, Kozlov AG, Lohman TM, Chemla YR. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. ELife 2015;4:e08193.
[18] Roy R, Kozlov AG, Lohman TM, Ha T. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 2009;461:1092–7.
[19] Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, Lohman TM, et al. SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell 2011;146:222–32.
[20] Fanning E, Klimovich V, Nager AR. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 2006;34:4126–37.
[21] Lee KS, Marciel AB, Kozlov AG, Schroeder CM, Lohman TM, Ha T. Ultrafast Redistribution of E. coli SSB along Long Single-Stranded DNA via Intersegment Transfer. Journal of Molecular Biology 2014;426:2413–21.
[22] Ha T, Kozlov AG, Lohman TM. Single Molecule Views of Protein Movement on Single Stranded DNA. Annu Rev Biophys 2012;41:295–319.
[23] Ritort F. Single-molecule experiments in biological physics: methods and applications. J Phys: Condens Matter 2006;18:R531–R583.
[24] Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012;17:4047–132.
[25] Fluorescence Microscopy - Basic Concepts in Fluorescence | Olympus Life Science n.d. https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/fluorescence/fluorescenceintro/ (accessed June 28, 2019).
[26] Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nature Methods 2008;5:507–16.
[27] Joo C, Ha T. Single-Molecule FRET with Total Internal Reflection Microscopy. Cold Spring Harb Protoc 2012;2012:pdb.top072058.
[28] Fluorescence Resonance Energy Transfer (FRET) Microscopy - Introductory Concepts | Olympus Life Science n.d. https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/fluorescence/fret/fretintro/ (accessed June 28, 2019).
[29] Axelrod D. Total Internal Reflection Fluorescence Microscopy in Cell Biology. Traffic 2001;2:764–74.
[30] 許顥頤。2016。以單分子螢光共振能量轉移光譜研究人類端粒序列形成的鳥嘌呤四股結構之構形變化與動力學數據分析在不同實驗因素下的影響。碩士學位論文。台北:國立臺灣師範大學化學所。
[31] 陳巧穎。2017。B 細胞淋巴瘤基因啟動子區域中 DNA 四股結構之構型間轉換的單分子研究。碩士學位論文。台北:國立臺灣師範大學化學所。
[32] 黃子芸。2016。利用單分子技術研究小腦失調症第 31 型特殊連續 TGGAA 重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。
[33] 沈洋逸。2017。利用單分子技術研究與染色體易碎症相關的 d(CGG) 重複序列及其抑制疾病的變異序列之構型動態學。碩士學位論文。台北:國立臺灣師範大學化學所。
[34] Cordes T, Vogelsang J, Tinnefeld P. On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. J Am Chem Soc 2009;131:5018–9.
[35] Koker TH de, Mozuch MD, Cullen D, Gaskell J, Kersten PJ. Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Applied and Environmental Microbiology Vol 70, No 10 (Oct 2004): Pages 5794-5800 2004.
[36] 魏語潔。2017。使用單分子技術研究棘黴素和小分子藥物減緩致病串聯重複dna序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學所。
[37] König SLB, Hadzic M, Fiorini E, Börner R, Kowerko D, Blanckenhorn WU, et al. BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data. PLOS ONE 2013;8:e84157.
[38] McKinney SA, Joo C, Ha T. Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling. Biophys J 2006;91:1941–51.
[39] Blanco M, Walter N. Analysis of Complex Single Molecule FRET Time Trajectories. Methods Enzymol 2010;472:153–78.
[40] Ni C-W, Wei Y-J, Shen Y-I, Lee I-R. Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences. J Phys Chem Lett 2019:3985–90.
[41] Figueroa AÁ, Cattie D, Delaney S. Structure of Even/Odd Trinucleotide Repeat Sequences Modulates Persistence of Non-B Conformations and Conversion to Duplex. Biochemistry 2011;50:4441–50.
[42] Huang J, Delaney S. Unique Length-Dependent Biophysical Properties of Repetitive DNA. J Phys Chem B 2016;120:4195–203.
[43] Nguyen B, Sokoloski J, Galletto R, Elson EL, Wold MS, Lohman TM. Diffusion of human Replication Protein A along single stranded DNA. J Mol Biol 2014;426:3246–61.
[44] Ray S, Qureshi MH, Malcolm DW, Budhathoki JB, Çelik U, Balci H. RPA-Mediated Unfolding of Systematically Varying G-Quadruplex Structures. Biophys J 2013;104:2235–45.