簡易檢索 / 詳目顯示

研究生: 李宜芬
Yi-Fen, Li
論文名稱: 國三學生突破因附圖造成之論證障礙的學習歷程之研究
指導教授: 林福來
Lin, Fou-Lai
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 162
中文關鍵詞: 幾何幾何證明論證障礙附圖合作學習
英文關鍵詞: Geometry, Geometric proof, proving obstacle, figure, cooperative learning
論文種類: 學術論文
相關次數: 點閱:340下載:71
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討國三學生作幾何證明時,命題中的附圖所造成的幾何論證障礙,及障礙形成的原因;據此設計相關的探究活動,以小組合作學習方式提供學生充分操作圖形及自行構圖的學習活動,觀察學生在此學習環境下,突破論證障礙的學習歷程,以建立幾何論證能力的發展機制。
    本研究主要分為兩個階段,第一階段為國三學生學習現況的調查,研究樣本為已修畢幾何證明的國三學生,共兩個班級74位學生接受問卷,第二階段為探究活動的實施,主要有6位學生參與;採用的研究工具在第一階段研究中有基本幾何圖形概念問卷、幾何證明有效性瞭解問卷、幾何證明能力問卷等三份問卷,而第二階段採用的研究工具有學習本以及偵錯問卷。
    研究方法主要為詮釋性研究法。探究活動採參與觀察研究法。蒐集的資料有學生問卷的卷面作答情形、探究活動中學生的對話文字稿及學習本內學生所記錄的圖形操作及構圖過程。
    針對本研究之研究目的,主要的研究結果如下:
    (一)國三學生對基本幾何圖形的瞭解源自其典型圖形心像的屬性。
    (二)不同附圖形式的改變對於國三學生在論證有效性瞭解上造成影響。
    (三)國三學生因附圖形式而造成的幾何論證障礙有:(1)依照典型圖形心像訂定推論目標(2)因附圖視覺表徵導致過度一般化典型圖形之屬性或引用錯誤性質,而造成推論障礙。
    (四)在合作學習的情境下,國三學生能經由充分操作圖形及自行構圖的過程,將定義時不要之屬性命題化,進而形成圖形之定義並發現圖形間的包含關係。
    (五)瞭解圖形定義的國三學生,能依照題意呈現不同附圖方式,因此能瞭解證明有效性並突破附圖所造成的幾何論證障礙,進行證明。

    第壹章 緒 論...................................1 第一節 研究動機................................1 第二節 研究目的................................3 第三節 研究問題................................4 第四節 名詞界定................................5 第二章 文獻探討.................................7 第一節 幾何思維的發展..........................7 第二節 圖形的概念定義及概念心像...............12 第三節 圖形的瞭解.............................17 第四節 幾何證明...............................20 第五節 合作學習...............................26 第三章 研究方法.................................29 第一節 研究設計...............................29 第二節 研究樣本...............................34 第三節 研究工具...............................38 第四節 研究過程...............................41 第五節 研究限制...............................45 第四章 國三學生幾何論證學習現況.................47 第一節 基本幾何圖形概念.......................47 第二節 附圖改變對證明有效性瞭解的影響.........59 第三節 附圖形式對於幾何證明能力的影響.........72 第五章 探究活動之結果與討論.....................79 第一節 探究活動之流程.........................79 第二節 充分操弄幾何圖形對圖形認知能力的影響...81 第三節 圖形定義的認知歷程.....................85 第四節 發展論證一般性瞭解及結構證明能力之歷程.89 第五節 探究活動之反思與討論...................97 第六章 結論與建議 ...............................99 第一節 結論...................................99 第二節 建議..................................102 參考文獻.........................................105

    中文部份
    全任重(民85)。圓規、直尺與Cabri-geometers。數學傳播第20卷第1期,3-14。
    林永發(民87)。在動態幾何環境中培養命題式題能力的研究。國立臺灣師範大學數學系碩士班碩士學位論文,未出版,台北市。
    林生傳(民86)。新教學理論與策略 : 自由開放社會中的個別化教學與後個別化教學。台北市:五南出版社。
    林福來(民71)。談中學幾何教材。科學教育月刊,第46期,14-24。
    林福來(民90)。青少年的數學概念學習研究-子計劃十四:青少年數學論證能力發展研究。行政院國家科學委員會題研究計畫期中報告。
    林福來(民84)。數學證明的瞭解(Ⅱ)。行政院國家科學委員會題研究計畫期末報告。
    林碧珍(民82)。兒童「相似性」概念發展之研究-長方形。新竹師院學報,第六期,333-377。
    吳德邦(民84)。范析理(ven Hiele)對我國師範學院學生在非歐幾何學的學習成就與幾何思考層次之研究。台中師院學報,第9期,443-474。
    吳慧真(民86)。幾何證明探究教學之研究。國立臺灣師範大學數學系碩士班碩士學位論文,未出版,台北市。
    郭諭陵(民81)。「後設認知」之探討。中等教育第43卷第4期,92-100。
    郭諭陵(民82)。有效的教學策略舉隅。中等教育第44卷第3期,100-105。
    桂慶中、施頂清(民89)。從合作學習(小組討論)談閱讀理解能力之提昇。中等教育第51卷第5期,65-73。
    國立編譯館主編(民89)。國民中學數學教師手冊第五冊。台北:國立編譯館。
    張景媛(民84) 國中生建構幾何概念之研究暨統整式合作學習的幾何教學策略效果之評估。教育心理學報第28期,99-144。
    陳穎希(民 90)。國中數學新舊教材之比較研究-從第三次國際數學與科學教育成就研究的後續調查來探究。國立臺灣師範大學數學系碩士班碩士學位論文,未出版,台北市。
    黃儒傑(民89)。數學科同質解題層次小組教學模式之理論探究。教育研究第8期,149-159。
    詹玉貞(民 88)。波利亞的解題步驟對國中數學資優生學習幾何證明成效之研究。國立臺灣師範大學科學教育研究所碩士學位論文,未出版,台北市。
    葛曉冬(民 89)。花蓮地區國小泰雅族學生van Hiele幾何思考層次之調查研究。國立花蓮師範學院國小科學教育研究所碩士學位論文,未出版,花蓮縣。
    鄭英豪(民89)。學生教師數學教學概念的學習:以「概念啟蒙例」的教學概念為例。國立臺灣師範大學數學系博士班博士學位論文,未出版,台北市。
    蔡聰明(民84)。從畢氏學派到歐氏幾何的誕生(之一)。科學月刊第26卷第2期,115-120。
    譚寧君(民 82)。兒童的幾何觀-由van Hiele幾何思考的發展模式談起。國民教育,第33卷5、6期,12-17。
    日文部份
    中西知真紀(1991)。図形における論証の難しさ。教育科学数学教育-論証指導のポイント、教え方の工夫,No.406,13-20.
    西塔伸二(1994)。論証に必要な作図指導の具体例。教育科学数学教育-作図指導を通して図形基礎学力を培う,No.436,29-35.
    西文部份
    Battista, M.T.(1994). On Greeno's environmental/model view of conceptual domains: A spatial geometric perspective. Journal for Research in Mathematics Education, 25(1), 86-100.
    Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D.Pimm (Ed.), Mathematics, Teachers, and Children (pp.216-238). London:Hodder and Stoughton.
    Chazan, D. (1993). High School Geometry Students’ Justification for their Views of Empirical Evidence and Mathematical Proof. Educational Studies in Mathematics 24, 359-387.
    Clements, M. A. (1979). Sex differences in mathematical performance:An histrorical perspective. Educational Studies in Mtahematics, 10, 305-322.
    Clements, D. H. & Battista, M.T. (1992). Geometry and spatial reasoning. In D. A. Grows (Ed.), Hand book of research on mathematics teaching and learning(Chap.18). New York: Macmillan Publishing Company.
    Clements, D. H. (1999). Young Children’s Concepts of Shape. Journal for Research in Mathematics Education,30(2),192-213.
    Clements, D. H. (2000), Young Children’s ideas about Geometric Shapes. Teaching Children Mathematics,6(8).482-488.
    Coe, R. & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics students.British Educational Research Journal, 20(1), 41-53.
    Darke, I. (1982). A review of research related to the topological primacy thesis. Educational Studies in Mathematics, 13, 119-142.
    Davis, R. B. (1986). Algebra in elementary schools. Proceedings of the 5th In ternational Cogress on Mathematical Education, Birkhauser, Bosten.
    Dickson, L.,Brown, M. & Gibson, O. (1984).Children Learning Mathematics: A Teacher’s Guide to Recent Research. England: The Alden Press Ltd, Oxford.
    Dreyfus, T. (1991). Advanced Mathematical Thinking Processes. In D. Tall(Ed.), Advanced Mathematical Thinking (pp.25-53). Netherlands:Kluwer Academic Publishers.
    Dreyfus, T. (1999). Why Johnny can’t prove? Educational Studies in Mathematics, 38, 85-109.
    Duval, R. (1995). Geometrical Pictures:Kinds of Representation and Specific Processings. In R. Sutherland & J.Mason (Eds.), Exploiting Mental Imagery with computers in Matehmatics Education(pp.142-127). Berlin: Springer(NATO ASI Series n 138).
    Duval, R. (1998). Geometry from a cognitive of view.Perspectives on the Teaching of Geometry for the 21st century.An ICMI Study. (pp.37-52).
    Eliot, J. (1987). Models of psychological space. New York, NY:Springer-Verlag.
    Ernets, P. (1991). The philosophy of mathematics education. Hampshire, UK:The Falmer Press.
    Finlow-Bates, K.,Lerman, S. & Morgan, C. (1993). A survey of current concepts of proof help by first year mathematics strdents. In I. Hirabayashi, N. Nohda, K. Shigematsu & F.-L. Lin(Eds.), Proceedings of the Seventeenth International Conference on the Psychology of Mathematics Education, University of Tsukuba, Japan, Vol. I, pp.252-259.
    Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht, The Netherlands: Reidel.(pp.143-153)
    Fischbein, E. (1996). The Psychological Nature of Concepts. In H. Mansfield, N. A. Pateman, & N. Bednarz (Eds.), Mathematics For Tomorrow’s Young Children(pp.105-110). London:Kluwer Academic Publishers.
    Fuy, D., Geddes, D. & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. American: The National Council of Teachers of Mathematics.
    Good, T. L., Mulryan, C. & McCaslin, M. (1992). Grouping for Instruction in Mathematics: A Call for Programmatic Reaearch on Small-Group Processes. In D. A. Grows(Ed.), Hand book of research on mathematics teaching and learning. (Chap.9). New York: Macmillan Publishing Company.
    Hanna, G. (1991). Mathematical Proof. In D. Tall(Ed.), Advanced Mathematical Thinking (pp.54-61). Netherlands:Kluwer Academic Publishers.
    Healy L. & Hoyles, C. (2000). A Study of Proof Conceptions in Algebra. Journal for Research in Mathematics Education, 31(4), 396-428.
    Hershkowitz, R. (1989). Visualization in geometry-Two sides of the coin. Focus in Learning Problems in Matehmatics, 11(1), 61-76.
    Hoffer, A. (1981). Geometry is more thatn proof. Mathematics Teacher,74, 11-18.
    Hoyles, C. (1997). The Curricular Shaping of Students’ Approaches to Proof. For the Learning of Matehmatics ,17(1), 7-16
    Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, MA: Harvard University Press.
    Leikin, R. & Zaslavsky, O. Mathematics Teacher,92 (3), 240-246
    Miyazaki, M. (2000). Levels of Proof in Lower Secondary School Mathematics-As Steps from ad Inductive Proof to an Algebraic Demonstration. Educational Studies in Mathematics, 41, 47-68.
    Moore R. C. (1994). Making the Transition to Formal Proof. Educational Studies in Mathematics, 27, 249-266
    Presmeg, N. C.(1997). In L. D. English(Ed.), Generalization Using Imagery in Mathematics. Mathematical Reasoning (pp.299-312). London: Lawrence Erlbaum Associates.
    Schwarz, B. B. & Hershkowitz, R. (1999). Prototypes: Brakes or Levers in Learning the Function Concept? The Role of Computer Tools. Journal for Research in Mathematics Education, 30(4), 362-389
    Tall, D. & Vinner, S.(1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169.
    Tall, D.(1989). The nature of mathematical proof. Mathematics Teaching, 127, 28-31.
    Tsamir, P. & Sheffer, R. (2000). Concrete and Formal Arguments: The Case of Division by Zero. Mathematics Education Research Journal, 12(2), 92-106.
    Usiskin, Z.(1987). Resolving the continuing dilemmas in school geometry. In A. P. Shulte(Ed.), Learning and teaching geometry, K-12 (pp.17-31). American : The National Council of Teachers of Mathematics.
    van Hiele, P. M. (1999). Developing Geometric Thinking through Activities That Begin with Play. Teaching Children Mathematics, 5(6), 310-317.
    Vinner, S. & Dreyfus, T. (1989). Images and Definitions for the Concept of Function. Journal for Research in Mathematics Education, 20(4), 356-366.
    Vinner, S. (1991). The Role of Definitions in Teaching and Learning Mathematicas. In D. Tall(Ed.), Advanced Mathematical Thinking (pp.65-81). Netherlands:Kluwer Academic Publishers.
    Wheatley, G. (1992). The role of reflection in mathematics learning. Educational Studies in Mathematics, 23, 529-541.
    Wiegel, H. G. (1998). Kindergarten Sudents’ Organization of Counting in Joint Counting Tasks and the Emergence of Cooperation. Journal for Research in Mathematics Education, 29(2), 204-204.
    Wyndhamn, J. & Saljo, R. (1997). Word Problems and Mathematical Reasoning--A Study of Children's Mastery of Reference and Meaning in Textual Realities. Learning and Instruction,7(4),361-382.
    Yackel, E. & Cobb, P. (1996). Sociomathematical Norms, Argumentation, and Autonomy in Mathematics. Journal for Research in Mathematics Education, 27(4), 458-478.

    QR CODE