簡易檢索 / 詳目顯示

研究生: 朱家萱
Chu, Chia-Shiuan
論文名稱: 西太平洋暖池MD97–2140岩芯120萬至60萬年前之古海洋學研究:有孔蟲殼體穩定碳氧同位素與鎂鈣比值
Western Pacific Warm Pool Paleoceanography from 1.2 to 0.6 Ma: Stable Carbon and Oxygen Isotopes and Mg/Ca Ratios of Foraminiferal Tests from Core MD97–2140
指導教授: 米泓生
Mii, Horng-Sheng
羅立
Lo, Li
口試委員: 李孟陽 羅立 米泓生
口試日期: 2021/09/02
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 75
中文關鍵詞: 中更新世變遷西太平洋暖池有孔蟲穩定碳氧同位素與鎂鈣比值
英文關鍵詞: Mid-Pleistocene Transition (MPT), Western Pacific Warm Pool (WPWP), Foraminiferal carbon and oxygen isotopes and Mg/Ca ratios
DOI URL: http://doi.org/10.6345/NTNU202101224
論文種類: 學術論文
相關次數: 點閱:178下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析西太平洋暖池中心MD97–2140岩芯(2°02 N, 141°45 E,水深2547公尺),岩芯深度1700–2700公分(約120萬年至60萬年前)次表層浮游有孔蟲 Neogloboquadrina dutertrei(355–425 μm)之穩定碳、氧同位素成分與Mg/Ca比值,與三種底棲性有孔蟲Uvigerina spp.、Cibicidoides wuellerstorfi與Pyrgo spp.(>250 μm)之穩定碳、氧同位素成分,以重建中更新世變遷時西赤道太平洋次表層水及深層水的古海洋環境紀錄。
    研究結果顯示,N. dutertrei的Mg/Ca比值(1.23–2.52mmol/mol)轉換之次表層水溫介於14.2–22.2 ℃間(N=100),在120萬至90萬年前之間次表水層溫度最高溫與最低溫差約為6 ℃,而90萬至60萬年前之間的最高溫與最低溫差異則增加至8 ℃。而120萬至90萬年前之間,表層水有孔蟲Globigerinoides ruber(de Garidel-Thoron et al., 2005)與次表層水N. dutertrei兩者的Mg/Ca溫度,在MIS 19–15間之溫差為8.5 ℃,相較於MIS 35–28間之溫度差7.7℃為大,可能反映出斜溫層變淺的現象。
    N. dutertrei殼體δ18O數值介於 -1.3至0.9 ‰(VPDB)(N=100), MIS16–23(約90萬年前)的冰期段落的δ18O數值比MIS24–36冰期段落的δ18O數值漸增約0.5‰,可能反映了冰川體積增加的趨勢;另MIS23間冰期的殼體δ18O數值較先前之間冰期的殼體δ18O數值大,亦暗示著此間冰期較少冰川融化的現象。而藉由N. dutertrei殼體δ18O數值與Mg/Ca比值所計算的次表層水δ18Osw數值,發現次表層海水δ18Osw於MIS23至MIS16期間,冰期δ18Osw數值出現漸增情況,也暗示陸冰體積可能有增加的現象。
    於MIS 23之後,次表層水δ18Osw數值有較多大於表層水之δ18Osw數值的狀況,可能源自表水層受到蒸發量減少或降雨增加之大氣狀態改變之影響。上述資料顯示中更新世變遷事件於西太平洋暖池海洋與大氣狀態的變化,而這些海氣變化皆可能是反應出地球冰期–間冰期循環週期自4.1萬年旋回轉變為10萬年旋回的影響。
    N. dutertrei殼體δ13C數值介於0.6至1.8 ‰之間,在中更新世變遷期間距今90 萬年前左右,與理論斜溫層應有的δ13C數值相對減少,可能支持斜溫層有變淺現象;又或者反映浮游植物以50 萬年消長的低谷期,因此數值較小。底棲性有孔蟲的δ13C數值在中更新世變遷期間變化較無規律性,其中Uvigerina spp.的δ13C數值與位於南太平洋的ODP 1123岩芯的Uvigerina spp.的δ13C數值在距今120–60萬年前間之數值多數相符,顯示此處底水環境反映來源的底水水團繞極深層水之δ13C狀態。

    This study analyzes stable carbon and oxygen isotope compositions and Mg/Ca ratios of sub-surface (N = 100) and benthic foraminifera (N = 67) from core MD97–2140 located in Western Pacific Warm Pool (2°02 N, 141°45 E; water depth 2547 m) to resconstruct the paleoceanography during Mid-Pleistocene.
    Based on the Mg/Ca contents of N. dutertrei (from 1.23–2.52mmol/mol; 355–425 μm), the sub-surface seawater temperatures are estimated between 14.2℃ and 22.2℃. Temperature differences are respectively 6℃ and 8℃ prior to MIS 23 and posterior to MIS 23. According to the G. ruber (de Garidel-Thoron et al., 2005) and N. dutertrei Mg/Ca temperatures, shallowing of thermocline depth is observed in Mid-Pleistocene Transition (MIS 21–15).
    δ18O values of N. dutertrei shells are between -1.3–0.9 ‰ (VPDB). The overall δ18O values of N. dutertrei shells incerased about 0.5‰ for the glacial stages after 900 ka may indicate increase of ice volume. Adopted the Mg/Ca temperatures, the calculated sub-surface seawater δ18Osw values based on N. dutertrei δ18O values also showing greater δ18Osw values and thus provide further evidence for increament of ice volume after 900 ka. In addition, the δ18O values of MIS 23 was greater than those of interglacial periods prior to MIS23 indicating that less continental ice was melted in MIS 23.
    Sub-surface water δ18Osw values were higher than those of surface water after MIS 23 might imply that the surface water δ18Osw values were influenced by the weaken evaporation rate or more rainfall at this area. The Western Pacific Warm Pool ocean and atmosphere condition transformed in MPT time interval might be the caused by change in the glacial–interglacial cycle period from 41 kyr to 100 kyr.
    δ13C values of N. dutertrei shells are between 0.6‰ and 1.8 ‰. The δ13C values after MIS 23 are lower than those before MIS23 may indicate shallowing of thermocline as well. The δ13C records of Uvigerina spp. (>250 μm) of this study have comparable patten and values with those of core ODP 1123 located in southern pacific (Elderfield et al., 2012), implying the bottom water was mainly influence by Circumpolar Deep Water (CDW).

    中文摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 viii 第一章 緒論 1 1-1-1. 全球氣候變遷與冰期–間冰期旋回的控制因子概述 1 1-1-2. 外在影響地球氣候的因子–米蘭科維奇循環 2 1-2. 中更新世變遷(Mid-Pleistocene Transition, MPT)氣候事件 4 1-3. 穩定氧、碳氧碳同位素原理 6 1-4. 鎂鈣元素比原理 8 1-5. 西太平洋暖池在氣候變遷中的角色 9 1-6. 研究目的 10 第二章 研究區域與材料 11 2-1. MD97–2140岩芯介紹與周圍水文環境 11 2-2. 次表層水浮游性有孔蟲Neogloboquadrina dutertrei 15 2-3. 底棲性有孔蟲 16 第三章 研究方法 19 3-1. 岩芯沉積物前處理 19 3-2. 有孔蟲挑選原則 20 3-3. 穩定氧、碳同位素樣本前處理與分析方法 21 3-4. 鎂鈣元素比之樣本前處理與分析方法 22 第四章 研究結果與討論 24 4-1. N. dutertrei與底棲性有孔蟲殼體穩定碳、氧同位素成份 24 4–2. 底棲有孔蟲穩定氧同位素與年代 27 4–3. 樣本粗顆粒比 30 4–4-1. N. dutertrei殼體鎂鈣元素比值與其他元素分析結果 32 4–4-2. N. dutertrei殼體Mg/Ca轉換的古溫度紀錄 34 4–4–3. N. dutertrei殼體穩定氧同位素成份 36 4–4-4. 計算次表層海水的水體穩定氧同位素 38 4-5-1. 表層水與次表層水Mg/Ca溫度變化 40 4-5-2. 表層水、次表層水與底水的穩定氧同位素變化 42 4-6. N. dutertrei與底棲性有孔蟲殼體穩定碳同位素 47 4–7.頻譜分析 50 4–8. 中更新世變遷西太平洋暖池所反映的古環境狀態 55 第五章 結論 60 參考文獻 62 附錄、MD97–2140岩芯次表層水浮游有孔蟲N. dutertrei之δ18O、 δ13C、Mg/Ca比值數據與底棲性有孔蟲之δ18O、δ13C數據 72

    Ahrens, C. Donald. (2007). Meteorology today : an introduction to weather, climate, and the environment. Belmont, CA :Thomson/Brooks/Cole

    Anand, P., Elderfield, H., & Conte, M. H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2), doi:10.1029/2002pa000846

    Anderson, T. F., & Arthur, M. A. (1983). Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. Unknown Journal, 1.1-1.151.

    Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia. (2006). World Ocean Atlas 2005, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D.C., 182 pp.

    Barker, S., Cacho, I., Benway, H., & Tachikawa, K. (2005). Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews, 24(7-9), 821–834. doi:10.1016/j.quascirev.2004.07.016

    Barker, S., M. Greaves, and H. Elderfield (2003), A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry, Geochem. Geophys. Geosyst, 4 (9), 8407, doi:10.1029/2003GC000559.

    Bassinot, F. C., Beaufort, L., Vincent, E., Labeyrie, L. D., Rostek, F., Müller, P. J., … Lancelot, Y. (1994). Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500-kyr record of carbonate dissolution. Paleoceanography, 9(4), 579–600. doi:10.1029/94pa00860

    Beaufort Luc, Chen Min-Te, Chivas Allan, Manighetti Barbara. (1997). Campagne IPHIS - IMAGES Ill / MD 106 du 23-05-97 au 28-06-97. Les Publications de l'Institut français pour la recherche et la technologie polaires. Les Rapports des campagnes à la mer, 151p. Open Access version : https://archimer.ifremer.fr/doc/00629/74140/

    Berger, W. H., Yasuda, M. K., Bickert, T., Wefer, G., & Takayama, T. (1994). Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806. Geology, 22(5), 463. doi:10.1130/0091-7613(1994)022<0463:qtsfto>2.3.co;2

    Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W. (1998). Reevaluation of the oxygenisotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations: Paleoceanography, v. 13, no. 2, p. 150-160.

    Blanchet, C. L., Kasten, S., Vidal, L., Poulton, S. W., Ganeshram, R., & Thouveny, N. (2012). Influence of diagenesis on the stable isotopic composition of biogenic carbonates from the Gulf of Tehuantepec oxygen minimum zone. Geochemistry, Geophysics, Geosystems, 13(4), n/a–n/a. doi:10.1029/2011gc003800

    Bostock, Helen & Hayward, Bruce & Neil, Helen & Currie, Kim & Dunbar, G.. (2011). Deep-water carbonate concentrations in the southwest Pacific. Deep Sea Research Part I Oceanographic Research Papers. 58. 72-85. 10.1016/j.dsr.2010.11.010.

    Carcaillet, J. T., Thouveny, N., & Bourlès, D. L. (2003). Geomagnetic moment instability between 0.6 and 1.3 Ma from cosmonuclide evidence. Geophysical Research Letters, 30(15). doi:10.1029/2003gl017550

    Clark P. U. and Pollard D. (1998). Origin of the middle Pleistocene transition by ice sheet erosion of regolith: Paleoceanography, 13 (1), p.129

    Clark, P., Archer, D., Pollard, D., Blum, J., Rial, J., & Brovkin, V. et al. (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 25(23-24), 3150-3184. doi: 10.1016/j.quascirev.2006.07.008

    Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.-X. (2013; updated). The ICS International Chronostratigraphic Chart. Episodes 36: 199-204.

    Corliss, B. H. (1991). Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Marine Micropaleontology, 17(3-4), 195–236. doi:10.1016/0377-8398(91)90014-w
    de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. et al. (2005). Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298. https://doi.org/10.1038/nature03189

    Donguy, J. R. (1987). Recent advances in the knowledge of the climatic variations in the tropical Pacific ocean. Progress in Oceanography, 19(1), 49–85. doi:10.1016/0079-6611(87)90003-6

    Emery, W.J., Meincke, J. (1986). Global Water Masses - Summary and Review. Oceanologica Acta 9, 383-391,.

    Emiliani, C. (1955). Pleistocene Temperatures. The Journal of Geology, 63(6), 538-578. Retrieved June 11, 2021, from http://www.jstor.org/stable/30080906

    Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., & Piotrowski, A. M. (2012). Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition. Science, 337(6095), 704–709. doi:10.1126/science.1221294

    Elderfield, H., and Ganssen, G. (2000). Past temperature and delta O-18 of surface oceanwaters inferred from foraminiferal Mg/Ca ratios: Nature, v. 405, no. 6785, p.442-445.

    Elderfield, H., M. Vautravers, and M. Cooper. (2002).The relationship between shell size and Mg/Ca, Sr/Ca, d18O, and d13C ofspecies of planktonic foraminifera, Geochem. Geophys. Geosyst., 3(8), 10.1029/2001GC000194.

    Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., & Bé, A. W. H. (1982). Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 298(5877), 841–844. doi:10.1038/298841a0

    Fairbanks, R. G., & Wiebe, P. H. (1980). Foraminifera and Chlorophyll Maximum: Vertical Distribution, Seasonal Succession, and Paleoceanographic Significance. Science, 209(4464), 1524–1526. doi:10.1126/science.209.4464.1524

    Ford, Heather L., Sosdian, Sindia M., Rosenthal, Yair and Raymo, Maureen E. (2016). Gradual and abrupt changes during the Mid-Pleistocene Transition. Quaternary Science Reviews 149 , pp. 222-233. 10.1016/j.quascirev.2016.07.005
    Ford, H., & Raymo, M. (2019). Regional and global signals in seawater δ18O records across the mid-Pleistocene transition. Geology, 48(2), 113-117. doi: 10.1130/g46546.1

    Garcia H.E., T.P. Boyer, O.K. Baranova, R.A. Locarnini, A.V. Mishonov, A. Grodsky, C.R.Paver, K.W. Weathers, I.V. Smolyar, J.R. Reagan, D. Seidov, M.M. Zweng (2019). World Ocean Atlas 2018: Product Documentation. A. Mishonov, Technical Editor.

    Graham, D. W., Corliss, B. H., Bender, M. L., & Keigwin, L. D. (1981). Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera. Marine Micropaleontology, 6(5-6), 483–497. doi:10.1016/0377-8398(81)90018-9

    Grossman, E. L. (1987). Stable isotopes in modern benthic foraminifera: a study of vital effect. Journal of Foraminiferal Research, v. 17, p.48-61.

    Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194(4270), 1121–1132. doi:10.1126/science.194.4270.1121

    Hénin, C., du Penhoat, Y., and Ioualalen, M. (1998). Observations of sea surface salinity in the western Pacific fresh pool: Large-scale changes in 1992-1995: J. Geophys. Res., v. 103, p. 7523-7536.

    Holbourn, Ann & Henderson, Andy & MacLeod, Norman. (2013). Atlas of Benthic Foraminifera. 10.1002/9781118452493.

    Hollstein, M., Mohtadi, M., Kienast, M., Rosenthal, Y., Groeneveld, J., Oppo, D. W., et al. (2020). The impact of astronomical forcing on surface and thermocline variability within the Western Pacific Warm Pool over the past 160 kyr. Paleoceanography and Paleoclimatology, 35, e2019PA003832.
    https://doi.org/10.1029/2019PA003832

    Howell, P., Pisias, N.,J.Ballance, J. Baughman, and L. Ochs. (2006). ARAND Time-Series AnalysisSoftware, Brown University, Providence RI.

    Hughes, P. D., & Gibbard, P. L. (2018). Global glacier dynamics during 100 ka Pleistocene glacial cycles. Quaternary Research, 90(1), 222–243. doi:10.1017/qua.2018.37

    Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., … Toggweiler, J. R. (1992). On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing. Paleoceanography, 7(6), 701–738. doi:10.1029/92pa02253

    Imbrie, J. & Hays, J. & Martinson, Douglas & McIntyre, A. & Mix, Alan & Morley, J. & Pisias, Nicklas & Prell, W. & Shackleton, N.. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta 18O record.

    Kennedy, D., & Norman, C. (2005). What don't we know?. Science (New York, N.Y.), 309(5731), 75. https://doi.org/10.1126/science.309.5731.75

    Kimoto, K., Takaoka, H., Oda, M., Ikehara, M., Matsuoka, H., Okada, M., … Taira, A. (2003). Carbonate dissolution and planktonic foraminiferal assemblages observed in three piston cores collected above the lysocline in the western equatorial Pacific. Marine Micropaleontology, 47(3-4), 227–251. doi:10.1016/s0377-8398(02)00118-4

    Kraft, S., Frank, M., Hathorne, E. C., & Weldeab, S. (2013). Assessment of seawater Nd isotope signatures extracted from foraminiferal shells and authigenic phases of Gulf of Guinea sediments. Geochimica et Cosmochimica Acta, 121, 414–435. doi:10.1016/j.gca.2013.07.029

    Kawahata, H., Nishimura, A., & Gagan, M. K. (2002). Seasonal change in foraminiferal production in the western equatorial Pacific warm pool: evidence from sediment trap experiments. Deep Sea Research Part II: Topical Studies in Oceanography, 49(13-14), 2783–2800. doi:10.1016/s0967-0645(02)00058-9

    Kroopnick, P. M. (1985). The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Research Part A. Oceanographic Research Papers, 32(1), 57–84. doi:10.1016/0198-0149(85)90017-2

    Lea, D. W. (2004). The 100 000-Yr Cycle in Tropical SST, Greenhouse Forcing, and Climate Sensitivity, Journal of Climate, 17(11), 2170-2179. Retrieved Jun 9, 2021, from https://journals.ametsoc.org/view/journals/clim/17/11/1520-0442_2004_017_2170_tycits_2.0.co_2.xml

    Lea, D. W., T. A. Mashiotta, and H.J. Spero (1999) Controls on Mg and Sr uptake in planktonic foraminifera determined by live culturing. Geochem. Cosmochem. Acta 63, 2369.

    Lea, D. W., D. K. Pak, and G. Paradis (2005), Influence of volcanic shards on foraminiferal Mg/Ca in a core from the Gala´pagos region, Geochem. Geophys. Geosyst., 6, Q11P04, doi:10.1029/2005GC000970.

    Lebrato, M., Garbe-Schönberg, D., Müller, M. N., Blanco-Ameijeiras, S., Feely, R. A., Lorenzoni, L., … Oschlies, A. (2020). Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proceedings of the National Academy of Sciences, 201918943. doi:10.1073/pnas.1918943117

    Lindstrom, E., Lukas, R., Fine, R., Firing, E., Godfrey, S., Meyers, G., & Tsuchiya, M. (1987). The Western Equatorial Pacific Ocean Circulation Study. Nature, 330(6148), 533–537. doi:10.1038/330533a0

    Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography,20, PA1003, doi:10.1029/2004PA001071.

    Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia (2006). World Ocean Atlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182 pp.

    Lo, L., Lin, Y., Lee, M., Wei, K., Shen, C., Mii, H. (2008). Changes in vertical hydrological profile at the southern margin of the Western Pacific Warm Pool (WPWP) during the past 168,000 years: Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract PP23C-1495.

    Li Lo, Chuan-Chou Shen, Chia-Jung Lu, Yi-Chi Chen, Ching-Chih Chang, Kuo-Yen Wei, Dingchuang Qu, Michael K. Gagan. (2014) Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry, Journal of Asian Earth Sciences, Volume 81, 2014, Pages 115-122, ISSN 1367-9120, https://doi.org/10.1016/j.jseaes.2013.11.016.

    Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia. (2006). World Ocean Atlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182 pp.

    Laskar, J. (1990). The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus, 88(2), 266–291. doi:10.1016/0019-1035(90)90084-m

    Lukas, R. (2001). Pacific Ocean Equatorial Currents, in John, H. S., Karl, K. T., and Steve, A. T., eds., Encyclopedia of Ocean Sciences: Oxford, Academic Press, p.287-294.

    Maasch, K. (1988). Statistical detection of the mid-Pleistocene transition. Climate Dynamics, 2(3), 133–143. doi:10.1007/bf01053471

    Markova, Anastasia. (2005). Eastern European rodent (Rodentia, mammalia) faunas from the Early–Middle Pleistocene transition. Quaternary International. 131. 71-77. 10.1016/j.quaint.2004.07.020.

    McAlpine J.R., Keig G., and Falls R. (1983). Climate of Papua New Guinea. :Australian National University Press, Canberra

    McCave, I. N., Thornalley, D. J. R., & Hall, I. R. (2017). Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the “Mud Current Meter.” Deep Sea Research Part I: Oceanographic Research Papers, 127, 1–12. doi:10.1016/j.dsr.2017.07.003

    Medina–Elizalde M, Lea DW. (2005). The mid-Pleistocene transition in the tropical Pacific. Science. 5750:1009-12. doi: 10.1126/science.1115933. Epub 2005 Oct 13. PMID: 16223985.

    Murray, J.W. (1991). Ecology and Palaeoecology of Benthic Foraminifera. London, Longman Scientific & Technical, 397 pp.

    Pena, L.D., Cacho, I., Ferretti, P., and Hall, M.A. (2008). El Niño – Southern Oscillation -like variability during glacial terminations and interlatitudinal teleconnections: Paleoceanography, v. 23, PA3101, doi:10.1029/2008PA001620.

    Pisias, N. G., & Moore, T. C. (1981). The evolution of Pleistocene climate: A time series approach. Earth and Planetary Science Letters, 52(2), 450–458. doi:10.1016/0012-821x(81)90197-7

    Pierrehumbert, R. T. (2000). Climate change and the tropical Pacific: The sleeping dragon wakes. Proceedings of the National Academy of Sciences, 97(4), 1355–1358. doi:10.1073/pnas.97.4.1355

    Ravelo, A. C., & Hillaire-Marcel, C. (2007). Chapter Eighteen The Use of Oxygen and Carbon Isotopes of Foraminifera in Paleoceanography. Proxies in Late Cenozoic Paleoceanography, 735–764. doi:10.1016/s1572-5480(07)01023-8

    Ruddiman, W. F. (2001). Earth's climate: Past and future.

    Russon, T., Elliot, M., Sadekov, A., Cabioch, G., Corrège, T., & De Deckker, P. (2010). Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool. Geophysical Research Letters, 37(11), n/a–n/a. doi:10.1029/2010gl043191

    Ryan, Deirdre. (2018). The Role of Climate in Shaping the Coorong, Lower Lakes and Murray Mouth. 10.20851/natural-history-cllmm-2.6.

    Schulz, M. and Mudelsee, M. (2002) REDFIT: Estimating red-noise spectra directlyfrom unevenly spaced paleoclimatic time series. Computers and Geosciences, 28,421-426.

    Shackleton, N. & Berger, André & Peltier, W.. (1990). An Alternative Astronomical Calibration of the Lower Pleistocene Timescale Based on Odp Site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences. 81. 251-261. 10.1017/S0263593300020782.

    Shackleton N. J. and Opdyke N. D. (1973). Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperature and ice volumes on a 105 year and 106 year scale: Quaternary Research, 3, p.39–55.

    Shackleton, N. J., & Opdyke, N. D. (1976). Oxygen-Isotope and Paleomagnetic Stratigraphy of Pacific Core V28-239 Late Pliocene to Latest Pleistocene. Investigation of Late Quaternary Paleoceanography and Paleoclimatology, 449–464. doi:10.1130/mem145-p449

    Sharp Z. (2007) Stable Isotope Geochemistry. Pearson Prentice Hall. 344 p.

    Steinhardt, J., Cléroux, C., de Nooijer, L. J., Brummer, G.-J., Zahn, R., Ganssen, G., & Reichart, G.-J. (2015). Reconciling single-chamber Mg / Ca with whole-shell δ<sup>18</sup>O in surface to deep-dwelling planktonic foraminifera from the Mozambique Channel. Biogeosciences, 12(8), 2411–2429. doi:10.5194/bg-12-2411-2015

    Thunell, R. C., Qingmin, M., Calvert, S. E., & Pedersen, T. F. (1992). Glacial-Holocene Biogenic Sedimentation Patterns in the South China Sea: Productivity Variations and Surface Water pCO2. Paleoceanography, 7(2), 143–162. doi:10.1029/92pa00278

    Tian, J., Zhao, Q., Wang, P., Li, Q., & Cheng, X. (2008). Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography, 23(3), n/a–n/a. doi:10.1029/2007pa001552

    Venancio, I. M., Mulitza, S., Govin, A., Santos, T. P., Lessa, D. O., Albuquerque, A. L. S., et al. (2018). Millennial- to orbital-scale responses of western equatorial Atlantic thermocline depth to changes in the trade wind system since the Last Interglacial. Paleoceanography and Paleoclimatology, 33, 1490–1507. https://doi.org/10.1029/2018PA003437

    Wan, S., Jian, Z., & Dang, H. (2018). Deep hydrography of the South China Sea and deep water circulation in the Pacific since the Last Glacial Maximum. Geochemistry, Geophysics, Geosystems, 19, 1447– 1463. https://doi.org/10.1029/2017GC007377

    Wang, P., J. Tian, X. Cheng, C. Liu, and J. Xu (2004), Major Pleistocene stages in a carbon perspective: The South ChinaSea record and its global comparison, Paleoceanography, 19, PA4005, doi:10.1029/2003PA000991.

    Wang, Q., Wang, F., Feng, J., Hu, S., Zhang, L., Jia, F., & Hu, D. (2019). The Equatorial Undercurrent and Its Origin in the Region between Mindanao and New Guinea. Journal of Geophysical Research: Oceans. doi:10.1029/2018jc014842

    Webster, P. J., & Lukas, R. (1992). TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment. Bulletin of the American Meteorological Society, 73(9), 1377–1416. doi:10.1175/1520-0477(1992)073<1377:tctcor>2.0.co;2

    Whitman, J.M. and Berger, W.H. (1992). Pliocene-Pleistocene oxygen isotope record Site 586, Ontong Java Plateau. Mar. Micropal., 18: 171-198.

    Yan, X.-H., Ho, C.-R., Zheng, Q., and Klemas, V. (1992). Temperature and Size Variabilities of the Western Pacific Warm Pool: Science, v. 258, p. 1643-1645.

    Yamasaki, M., Sasaki, A., Oda, M., & Domitsu, H. (2008). Western equatorial Pacific planktic foraminiferal fluxes and assemblages during a La Niña year (1999). Marine Micropaleontology, 66(3-4), 304–319. doi:10.1016/j.marmicro.2007.10.006

    下載圖示
    QR CODE