研究生: |
洪瑄璟 Hung, Hsuan-Ching |
---|---|
論文名稱: |
低維度鈣鈦礦材料在發光二極體及光響應元件之光電特性與應用 The Optoelectrical Properties and Applications of Low-Dimensional Perovskite Light-Emitting Diodes and Photoconductors |
指導教授: |
趙宇強
Chao, Yu-Chiang |
口試委員: |
趙宇強
Chao, Yu-Chiang 駱芳鈺 Lo, Fang-Yuh 陳奕君 Cheng, I-Chun |
口試日期: | 2022/06/15 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 燭光 、二維鈣鈦礦 、光電導體 |
英文關鍵詞: | Candle-Like Emission, Two-Dimensional Perovskite, Photoconductors |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400964 |
論文種類: | 學術論文 |
相關次數: | 點閱:80 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文涵蓋兩個主題的研究:一個是無藍害鈣鈦礦發光二極體的製作,另一個是兩種鈣鈦礦材料藉由旋轉塗佈法製成二維鈣鈦礦光響應元件。
在無藍害鈣鈦礦發光二極體的研究中旨在透過控制低維度之〖 〖BA_2 MA_(n-1) Pb〗_n I〗_(3n+1) 的組成以製作出放出近似蠟蠋光色之發光二極體。在選擇材料的適當組成比例後,引入不同電子、電洞傳輸層進行效率量測以找出最適合之元件結構。最後,使用差溶劑處理、吹氮氣處理兩種方式修飾鈣鈦礦薄膜進而優化元件的量子效率,可將其量子效率提升至原本的1000倍。
在二維鈣鈦礦光響應元件的研究中旨在將鈣鈦礦溶液透過快速簡單的旋轉塗佈法形成鈣鈦礦薄片並製成元件探究其光電特性。本研究使用兩種材料分別為:MA_3 Bi_2 I_9、Cs_3 Bi_2 I_9 ,所製作的鈣鈦礦薄片最薄僅約2nm,且可由光學顯微鏡所看到的顏色簡單辨認晶體厚度之大小。在 MA_3 Bi_2 I_9 之研究中對電學特性有較多的探討,可藉由量測電壓與電流之關係圖得到缺陷密度等材料參數,亦可由光電流與暗電流之電流差異得知 MA_3 Bi_2 I_9 晶體有製成光電導體(Photoconductor)之潛力。而〖 Cs〗_3 Bi_2 I_9 則著墨較多在其光學特性之探討。藉由量測其低溫 PL特性得知〖 Cs〗_3 Bi_2 I_9 晶體之能隙、半高寬等隨溫度的變化與傳統半導體更為相似,亦可得知如激子結合能等材料相關參數。兩種材料之晶體在光學、電學特性上所得到的成果,讓未來進行薄片之特性量測時可有所期待。
This thesis covers the research of two topic: one is making blue-hazard free perovskite light-emitting diodes (PLED); the other is making low-dimensional perovskite photoconductors by spin coating.
The purpose of the first topic is making PLED that emits candle-like light through controlling the composition of low-dimensional perovskite, 〖 〖BA_2 MA_(n-1) Pb〗_n I〗_(3n+1). In order to find the best PLED’s structure, we introduced hole transporting layer and electron transporting layer into PLED’s structure after choosing appropriate composition ratio of the perovskite. Lastly, the external quantum efficiency of the PLED was optimized by a thousand times through dripping antisolvent or blowing nitrogen onto the perovskite film.
The purpose of the second topic is to investigate the optoelectronic properties of photoconductors made from perovskite flakes spin coated on silicon. MA_3 Bi_2 I_9 and Cs_3 Bi_2 I_9 were used in this work. The perovskite flakes with thickness of 2 nm was achieved. We can tell the thickness by observing the color of the perovskite flakes under optical microscope. In this thesis MA_3 Bi_2 I_9 had more discussion about electrical characteristics. We not only extracted the density of deep trap states by measuring current-voltage (IV) trace, but also knew that MA_3 Bi_2 I_9 crystal has the potential to be used as a photoconductor because of comparison of current in dark and light. On the other hand, Cs_3 Bi_2 I_9 had more discussion about optical properties. By measuring the temperature-dependent photoluminescence (PL), we knew Cs_3 Bi_2 I_9 is more like traditional semiconductors because the changes of PL characteristics Such as band gap, the PL spectra's full width at half maximum (FWHM), and integrated PL intensity as the temperature increases. In addition, the exciton binding energy, etc could also be extracted in this experiment. Due to optoelectronic properties of the two kinds of perovskite crystals, more tests of perovskite flakes is worth doing in the future.
Lu, M., et al., Metal halide perovskite light‐emitting devices: promising technology for next‐generation displays. Advanced Functional Materials, 2019. 29(30): p. 1902008.
Kim, Y.-H., H. Cho, and T.-W. Lee, Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences, 2016. 113(42): p. 11694-11702.
Shen, X., et al., Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano letters, 2019. 19(3): p. 1552-1559.
Seok, S.I., M. Grätzel, and N.G. Park, Methodologies toward highly efficient perovskite solar cells. Small, 2018. 14(20): p. 1704177.
Zhang, L., et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science & Applications, 2021. 10(1): p. 1-26.
Congreve, D.N., et al., Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics, 2017. 4(3): p. 476-481.
Wei, Z. and J. Xing, The rise of perovskite light-emitting diodes. The Journal of Physical Chemistry Letters, 2019. 10(11): p. 3035-3042.
Chen, Q., et al., Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015. 10(3): p. 355-396.
Yi, Z., et al., Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Advances, 2019. 1(4): p. 1276-1289.
Kim, E.-B., et al., A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021. 48: p. 100405.
Lin, H., et al., Low-dimensional organometal halide perovskites. ACS Energy Letters, 2017. 3(1): p. 54-62.
Lan, C., et al., Two-dimensional perovskite materials: from synthesis to energy-related applications. Materials today energy, 2019. 11: p. 61-82.
Kumar, G.S., R.R. Sumukam, and B. Murali, Quasi-2D perovskite emitters: a boon for efficient blue light-emitting diodes. Journal of Materials Chemistry C, 2020. 8(41): p. 14334-14347.
Raghavan, C.M., et al., Low-threshold lasing from 2D homologous organic–inorganic hybrid Ruddlesden–Popper perovskite single crystals. Nano Letters, 2018. 18(5): p. 3221-3228.
Lin, Y., et al., Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. The journal of physical chemistry letters, 2018. 9(3): p. 654-658.
Jou, J.-H., et al., Candlelight style organic light-emitting diode: a plausibly human-friendly safe night light. Journal of Photonics for Energy, 2014. 4(1): p. 043598.
Neamen, D.A., Semiconductor Physics and Devices: Basic Principles. 2012: McGraw-Hill.
Cini, M., Classical and quantum aspects of size effects. JOSA, 1981. 71(4): p. 386-392.
Kawabata, A. and R. Kubo, Electronic properties of fine metallic particles. II. Plasma resonance absorption. Journal of the physical society of Japan, 1966. 21(9): p. 1765-1772.
Ganière, J.-D., R. Rechsteiner, and M.-A. Smithard, On the size dependence of the optical absorption due to small metal particles. Solid State Communications, 1975. 16(1): p. 113-115.
Lu, T., et al., Temperature-dependent photoluminescence in light-emitting diodes. Scientific reports, 2014. 4(1): p. 1-7.
Briot, O., et al., The value of the direct bandgap of InN: a re‐examination. physica status solidi (c), 2004. 1(6): p. 1425-1428.
Eliseev, P.G., et al., “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Applied physics letters, 1997. 71(5): p. 569-571.
Kurtulik, M., et al., Temperature-dependent photoluminescence: A theoretical study. arXiv preprint arXiv:2007.00310, 2020.
Huang, L.-y. and W.R. Lambrecht, Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3, CsSnBr 3, and CsSnI 3. Physical Review B, 2013. 88(16): p. 165203.
Varshni, Y.P., Temperature dependence of the energy gap in semiconductors. physica, 1967. 34(1): p. 149-154.
Wei, K., et al., Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr 3 quantum dots. Optics letters, 2016. 41(16): p. 3821-3824.
Mahesh, K., et al., Lead-free cesium tin halide nanocrystals for light-emitting diodes and color down conversion. RSC Advances, 2020. 10(61): p. 37161-37167.
Mukherjee, S., et al., Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices. Scientific reports, 2016. 6(1): p. 1-11.
You, M., et al., Improving efficiency and stability in quasi-2D perovskite light-emitting diodes by a multifunctional LiF interlayer. ACS Applied Materials & Interfaces, 2020. 12(38): p. 43018-43023.
Lee, L.C., et al., Research Update: Bismuth-based perovskite-inspired photovoltaic materials. APL Materials, 2018. 6(8): p. 084502.
Liu, Y., et al., Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter, 2020. 3(1): p. 180-196.
Abulikemu, M., et al., Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH 3 NH 3) 3 Bi 2 I 9. Journal of Materials Chemistry A, 2016. 4(32): p. 12504-12515.
Liang, J., et al., Perovskite‐Derivative Valleytronics. Advanced Materials, 2020. 32(48): p. 2004111.
Jou, J.H., et al., OLEDs with Candle‐Like Emission. Information Display, 2015. 31(6): p. 23-27.
Wu, C., et al., Improved performance and stability of all‐inorganic perovskite light‐emitting diodes by antisolvent vapor treatment. Advanced Functional Materials, 2017. 27(28): p. 1700338.
Saidaminov, M.I., et al., Planar-integrated single-crystalline perovskite photodetectors. Nature communications, 2015. 6(1): p. 1-7.
Moiz, S.A., et al., Space charge–limited current model for polymers. Conducting Polymers, 2016. 5: p. 91.
Elakrmi, E., R.B. Chaâbane, and H.B. Ouada, Structure and electrical properties of nanostructured zinc oxide films prepared for optoelectronic applications. Akademeia, 2011. 2(1): p. ea0111.
Chiu, F.-C., A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014. 2014.
Shi, D., et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015. 347(6221): p. 519-522.
Li, W.G., et al., Enhanced on–off ratio photodetectors based on lead‐free Cs3Bi2I9 single crystal thin films. Advanced Functional Materials, 2020. 30(12): p. 1909701.
Qi, Z., et al., Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Research, 2019. 12(8): p. 1894-1899.
Zhang, H., et al., Lead free halide perovskite Cs 3 Bi 2 I 9 bulk crystals grown by a low temperature solution method. CrystEngComm, 2018. 20(34): p. 4935-4941.