簡易檢索 / 詳目顯示

研究生: 何思嘉
He, Ssu-Chia
論文名稱: 整合數位全像與條紋投影方式應用於積體電路表面量測之研究
A Study on Integrating Digital Holography and Fringe Projection Profilometry to Measure the Surface of Integrated Circuits
指導教授: 鄭超仁
Cheng, Chau-Jern
杜翰艷
Tu, Han-Yen
口試委員: 鄭超仁 杜翰艷 蘇威宏 林昱志
口試日期: 2021/08/03
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 數位全像術條紋投影輪廓術三維表面量測複合表面影像拼接
英文關鍵詞: Digital Holography, Fringe Projection Profilometry, Three-Dimensional Surface Measurement, Composite Surface, Image Fusion
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101046
論文種類: 學術論文
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為整合數位全像術(Digital Holography, DH)與條紋投影輪廓術(Fringe Projection Profilometry, FPP)兩技術於同一系統,透過此整合系統量測物體的三維表面,可達到比單一技術量測結果更加完整的三維表面資訊。如今晶片尺寸越做越小,對z軸解析度的要求越來越高,在量測樣本的深度變化時,DH的三維解析度比FPP更加精密,因此可以透過DH量到更精密的元件;FPP則可以量測漫射面的物體表面資訊,而且在量測階高物體上FPP略勝一籌,可以量測到階高物體的高度,最後整合兩技術之優點,將這兩者技術的量測結果整合,即可獲得高解析度、物體資訊更完整的三維複合表面階高物體結果。

    This research is to integrate two technologies of Digital Holography (DH) and Fringe Projection Profilometry (FPP) within the same system. The integrated system, is capable of measuring three-dimensional surface of the object. Utilizing the integrated system i.e. key benefits of DH and FPP results in more complete three-dimensional surface information.Nowadays, the chip size is getting smaller, and the requirements for the z-axis resolution are getting higher. When measuring the depth of the sample, the three-dimensional resolution of DH is better than FPP, so smaller details of the components can be measured through DH. FPP can measure the surface information of the object on the diffuse surface along with precise measurement of the height of the object. In the proposed study, the advantages of DH and FPP are integrated. The FPP is driven to measure the 3D surface of diffuse and step-high objects, the DH is for higher resolution to measure the detail component. During the integrated system can obtain the higher resolution and more complete information of object.

    致謝 I 論文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 三維表面量測技術發展及應用 1 1.2 文獻回顧 3 1.2.1 數位全像術 3 1.2.2 條紋投影輪廓術 7 1.3 研究目的與動機 11 1.4 論文架構 12 第二章 複合表面檢測工作原理 13 2.1 概述 13 2.2 數位全像術原理 14 2.3 條紋投影輪廓術原理 19 第三章 整合數位全像與條紋投影之光學架構 24 3.1 實驗系統架構 24 3.2 量測流程 27 3.2.1 數位全像記錄與重建 29 3.2.2 條紋投影記錄與重建 30 3.2.3 三維表面影像融合 33 第四章 實驗結果與討論 34 4.1 積體電路樣本 34 4.2 實驗結果與分析 35 第五章 結論與未來展望 56 參考文獻 57 附錄一 IOP-Lab & SPIE 2004 系統比較 62 附錄二 發表論文(OPTIC2018~2020) 63

    [1] G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472-553 (2012).
    [2] D. Gabor, “A New Microscopy Principle, “Nature 161, 777-778 (1948).
    [3] Eltronis, Holograms-What are they and how are they made?, URL https://www.eltronis.com/events/holograms-what-are-they-and-how-are-they-made/
    [4] E. N. Leith and J. Upatnieks,” Reconstructed Wavefronts and Communication Theory*,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [5] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).
    [6] T. Zhang and I. Yamaguchi, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [7] Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42, 1321-1324 (2017).
    [8] D. Leseberg and C. Frère, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27, 3020-3024 (1988).
    [9] H. Guo and M. Chen, “Multiview connection technique for 360-deg three-dimensional measurement,” Opt. Eng. 42(4), 900-905 (2003).
    [10] R. Xue, P. C. M. van Zijl, B. J. Crain, M. Solaiyappan, and S. Mori, “In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging,” Magn. Reson. Med. 42, 1123-1127 (1999).
    [11] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [12] X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54, A51-A58 (2015).
    [13] H. Y. Tu, W. J. Hsiao, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Synthetic aperture common-path digital holographic microscopy with spiral phase filter,” J. Opt. 19, 065604 (2017).
    [14] Y. C. Lin, C. J. Cheng, and L. C. Lin, “Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events,” Opt. Lett. 42, 2082-2085 (2017).
    [15] X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43, 1143-1146 (2018).
    [16] Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620-12631 (2018).
    [17] Y. Deng, C. H. Huang, B. Vinoth, D. Chu, X. J. Lai, and C. J. Cheng, “A compact synthetic aperture digital holographic microscope with mechanical movement-free beam scanning and optimized active aberration compensation for isotropic resolution enhancement,” Opt. Laser Eng. 134, 106251 (2020).
    [18] Z. Wang, Z. Zhang, N. Gao, Y. Xiao, F. Gao, and X. Jiang, “Single-shot 3D shape measurement of discontinuous objects based on a coaxial fringe projection system,” Appl. Opt. 58, A169-A178 (2019).
    [19] J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43, 2666-2680 (2010).
    [20] F. Chen, G. M. Brown, and M. M. Song, “Overview of 3-D shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
    [21] R. C. Machineni, G. E. Spoorthi, K. S.Vengala, S. Gorthi, R. K. S. S. Gorthi, “end-to-end deep learning-based fringe projection framework for 3D profiling of objects,” Comput. Vis. Image Underst. 199, 103023 (2020).
    [22] S. H. Rowe and W. T. Welford, “Surface topography of non-optical surfaces by projected interference fringes,” Nature 216, 786-788 (1967).
    [23] H. D. Polster, J. Pastor, R. M. Scott, R. Crane, P. H. Langenbeck, R. Pilston, and G. Steinberg, “New Developments in Interferometry,” Appl. Opt. 8, 521-556 (1969).
    [24] M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi, “Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations,” Appl. Opt. 36, 5347-5354 (1997).
    [25] V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105-3108 (1984).
    [26] J. L. Li, H. J. Su, and X. Y. Su, “Two-frequency grating used in phase-measuring profilometry,” Appl. Opt. 36, 277-280 (1997).
    [27] P. S. Huang, F. Jin, and F. P. Chiang, “Quantitative evaluation of corrosion by a figital fringe projection technique,” Opt. Lasers Eng. 31, 371-380 (1999).
    [28] Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218-225 (2010).
    [29] S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?,” Opt. Lasers Eng. 48, 133-140 (2010).
    [30] M. J. Prytulak and R. Jozwicki, “Fringe pattern projection method combined with digital holography,” SPIE Optical Metrology in Production Engineering, France, 2004.
    [31] S. Zhang and P. S. Huang,” Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
    [32] H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216, 65-80 (2003).
    [33] L. Merner, Y. Wang, and S. Zhang “Accurate calibration for 3D shape measurement system using a binary defocusing technique,” Opt. Laser Eng. 51, 514-519 (2013).
    [34] M. Vo, Z. Wang, B. Pan, and T. Pan, “Hyper-accurate flexible calibration technique for fringe-projection-based three-dimensional imaging,” Opt. Express 20, 16926-16941 (2012).
    [35] P. J. Tavares and M. A. Vaz, “Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry,” Opt. Commun. 274, 307-314 (2007).
    [36] S. Feng, Q. Chen, C. Zuo, J. Sun, and S. Yu, “High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion,” Opt. Commun. 329, 44-56 (2014).
    [37] E. Horn and N. Kiryati, “Toward optimal structured light patterns,” Image Vis. Comput. 17, 87-97 (1999).
    [38] G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Trans. Instrum. Meas. 49, 628-636 (2000).
    [39] D. Mahmoud, A. Khalil, and M. Younes, “Optimization of the longitudinal resolution of a structured light shape reconstruction system, a DOE approach,” Int. J. Precis. Eng. Manuf. 16, 1935-1939 (2015).
    [40] F. Wang, C. Wang, and Q. Guan, “Single-shot fringe projection profilometry based on deep learning and computer graphics,” Opt. Express 29, 8024-8040 (2021).

    無法下載圖示 本全文未授權公開
    QR CODE