簡易檢索 / 詳目顯示

研究生: 吳振維
Wu, Jhen-wei
論文名稱: 網通集團導入智慧供應鏈管理評估模式之研究
A Study on the Implementation of Smart Supply Chain Management Evaluation Models in the T Group
指導教授: 蘇友珊
Su, Yu-Shan
口試委員: 蘇友珊
Su, Yu-Shan
耿筠
Yun Ken
戴建耘
Dai, Chien-Yun
口試日期: 2024/07/15
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 134
中文關鍵詞: 智慧供應鏈管理分層式決策模型數位轉型網通集團
英文關鍵詞: SSCM, HDM, Digital Transformation, Network Group
研究方法: 分層式決策模型
DOI URL: http://doi.org/10.6345/NTNU202401705
論文種類: 學術論文
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討網通集團導入智慧供應鏈管理評估模式,透過HDM方法(分層式決策模型)分析供應鏈管理的構面與準則。研究的主要目的在於了解智慧供應鏈的概念及應用,並評估不同構面與準則間的權重排序及因果關係。最終提出對企業導入智慧供應鏈的關鍵要素與建議。
並從研究發現,在六大構面中智慧決策與分析與智慧生產規劃為最重要的兩大構面,這兩者對提升供應鏈效率及數據解讀尤其重要。其他構面則包括智慧設備平台、智慧物流與倉儲、智慧資訊網路及永續與職業安全衛生管理;準則部分則共有二十三項準則,前三名為智慧生產規劃下的先進規劃排程系統、企業資源規劃與製造執行系統。因此亦建議企業在導入智慧供應鏈時,應優先考慮這些關鍵構面與準則,並建議依照其重要程度執行專案優化。
最後本研究提供了一個評估智慧供應鏈管理的框架,透過對專家意見的彙整和數據分析,讓企業在後疫情時代提供,如何快速並有效率的導入智慧供應鏈,並提供實質性的參考。

This study examines how to implement smart supply chain management in a network group using Hierarchical Decision Modeling (HDM) to analyze key areas and criteria. The goal is to understand smart supply chains and assess the importance and relationships between different factors. The study identifies the most crucial elements and offers recommendations for businesses adopting smart supply chains.
Findings show that "Smart decision analysis" and "Smart production planning" are the most important dimensions for improving efficiency and data interpretation in the supply chain. Other key areas include "Smart device platform," "Smart logistics and warehousing," "Smart Information Network," and "Sustainability and occupational safety and health management." Among 23 criteria, the top three are Advanced planning & scheduling system, Enterprise resource planning, and Manufacturing execution system. Companies should focus on these areas and optimize projects based on their significance.
The study provides a framework for evaluating smart supply chain management, combining expert opinions and data analysis to guide businesses in effectively implementing smart supply chains in the post-pandemic era.

謝誌 i 摘要 ii Abstract iii 目次 iv 表次 vi 圖次 vii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究流程 3 第二章 文獻探討 5 第一節 智慧供應鏈管理概念與應用 5 第二節 智慧供應鏈構面與準則 9 第三章 研究方法 29 第一節 網通集團概況 29 第二節 生產商業模式 32 第三節 研究對象 35 第四節 HDM (分層式決策模型) 39 第四章 數據結果分析 45 第一節 研究結果與數據分析 45 第二節 準則分析結果 79 第五章 研究結論與建議 103 第一節 主要研究發現 103 第二節 研究貢獻 109 第三節 研究限制 111 第四節 未來研究方向 111 第五節 研究結論 112 參考文獻 115 附錄 專家問卷 121

中華中道領導文化總會祕書處、品質專案規劃委員會、ESG企業永續經營服務團隊 (2021)。 ESG上市上櫃公司的永續發展藍圖[ESG: The Blueprint for Sustainable Development of Listed Companies]。品質月刊, 57(1), 10-17。
王立志、范書愷、丁慶榮、郭財吉、林春成、許嘉裕 (2018)。 生產系統於先進智能製造之展望[The Review of Production System for Advanced Intelligent Manufacturing]。管理與系統, 25(3), 381-412。 doi: 10.29416/jms.201807_25(3).0005
王意婷(2023)。企業推動工業4.0導入智慧工廠之研究-以A公司為例。(未出版之碩士論文)國立臺灣師範大學,臺北市。 https://hdl.handle.net/11296/pw2u7a。
行政院科技會報辦公室 (2015)。 行政院生產力4.0發展方案。台灣經濟論衡, 13(3), 47-62。
李麗華、賴昶予 (2019)。 以精實物聯網平台架構實現中小企業達成工業4.0-以製造生產流程為例[An Approach for SME Manufacturing Process to Achieve Industrial 4.0 Using Lean-Based IoT Platform]。資訊管理學報, 26(2), 209-239。
林楨中(2017)。通過智慧科技打造安全衛生的職場環境。臺灣勞工季刊,(52),90-96。
徐志宏、吳少雄、鄒伯衡 (2021年2月)。工業4.0下的智慧供應鏈績效評估。物流技術與戰略雜誌。取自https://www.logisticnet.com.tw/publicationArticle.asp?id=1018
徐國容(2017)。EMS產業生產服務關鍵要素之研究—以P公司為例(未出版之碩士論文)國立臺灣大學,臺北市。
張國基、朱鍇莙 (2021)。 PCB廠導入工業4.0自動化智能AI管理系統等級評估。工業安全衛生,(383), 10-22。 doi: 10.6311/ishm.202105_(383).0003
郭晨暉、廖益昌、林啓正、蓋震宇 (2021)。 智慧製造執行系統與應用技術[Intelligent Manufacturing Execution System and its Application]。機械工業雜誌,(464), 32-40。
陳昌憲、林晉廷、葉柏毅(2022)。智慧機聯網於工廠防災監測系統之實務應用。機械工業雜誌,(470),39-48。
陳信銘、陳佳珮、邱柏訊、林多常、簡大為(2016)。智慧型影像監控之電子圍籬技術。電工通訊季刊,14-23。doi:10.6328/CIEE.2016.4.02
陳厚銘、柯雅菁、張幼齡 (2010)。 什麼是台灣廠商從代工到自有品牌經營之最有效組織結構?[What is the most effective organizational structure for Taiwanese OEM/ODM firms once they begin shifting towards OBM?]。行銷科學學報, 6(2), 81-105。
陳瑋鴻、陳禹蓁 (2023年10月)。ESG是什麼?ESG怎麼做?與CSR哪裡不同?中小企業導入永續經營5步驟。商業週刊。取自https://www.businessweekly.com.tw/carbon-reduction/blog/3010720
彭朱如、劉哲瑋、顏孟賢 (2015)。 從代工到自創品牌:在合作中啟動競爭[From OEM Supplier to OBM: Initiating Competition in Cooperation]。管理學報, 32(4), 347-369。 doi: 10.6504/jom.2015.32.04.01
曾于蓁(2020)。網路安全對國家安全之重要性:以台灣的網路安全為例。發展與前瞻學報,(30),5-26。doi:10.6737/JDP.202012_(30).01
黎立仁、吳銀澤、劉仁傑 (2020)。 精實智慧製造:概念架構與策略性解決共創平台[Lean Smart Manufacturing: A Conceptual Framework and Solution Based Co-Creative Platform]。管理與系統, 27(2), 191-211。 doi: 10.29416/jms.202004_27(2).0005
簡榮茂(2022)。 企業營運及製造之資訊系統導入規劃簡介[Introduction to the Operation and Manufacturing Information System Import Planning for Enterprises]。機械工業雜誌(470), 12-18。
闕妙如(2020)。 因應人工智慧科技之職業安全衛生管理運用。工業安全衛生(378), 7-9。 doi: 10.6311/ishm.202012_(378).0002
蘇晨瑜(2021)。 智慧化影像處理對於職業災害預防的應用-電腦視覺輔助產線管理提高實作場域安全。勞動及職業安全衛生研究季刊,(1),13-17。
鐘嘉德、高天助、楊嘉栩(2010)。雲端運算與產業發展。研考雙月刊,34(4),20-31。doi:10.6978/YKSYK.201008.0020
Chen, C., Fu, H., Zheng, Y., Tao, F., & Liu, Y. (2023). The advance of digital twin for predictive maintenance: The role and function of machine learning. Journal of Manufacturing Systems, 71, 581–594. https://doi.org/10.1016/j.jmsy.2023.10.010
Chopra, R., Sawant, L., Kodi, D., & Terkar, R. (2022). Utilization of ERP systems in manufacturing industry for productivity improvement. Materials Today: Proceedings, 62, 1238–1245. https://doi.org/10.1016/j.matpr.2022.04.529
Da Costa Barros, Í. R., & Nascimento, T. P. (2021). Robotic Mobile Fulfillment Systems: A survey on recent developments and research opportunities. Robotics and Autonomous Systems, 137, 103729. https://doi.org/10.1016/j.robot.2021.103729
Dong, W., & Jin, M. (2023). Automated storage and retrieval system design with variant lane depths. European Journal of Operational Research, S0377221723007634. https://doi.org/10.1016/j.ejor.2023.10.006
Ebayyeh, A. A. R. M. A., & Mousavi, A. (2020). A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry. IEEE Access, 8, 183192–183271. https://doi.org/10.1109/ACCESS.2020.3029127
Fragapane, G., De Koster, R., Sgarbossa, F., & Strandhagen, J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research, 294(2), 405–426. https://doi.org/10.1016/j.ejor.2021.01.019
Govindan, K., Kannan, D., Jørgensen, T. B., & Nielsen, T. S. (2022). Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence. Transportation Research Part E: Logistics and Transportation Review, 164, 102725. https://doi.org/10.1016/j.tre.2022.102725
Gunduz, M. A., Demir, S., & Paksoy, T. (2021). Matching functions of supply chain management with smart and sustainable Tools: A novel hybrid BWM-QFD based method. Computers and Industrial Engineering, 162. https://doi.org/10.1016/j.cie.2021.107676
Lavoie, J. R., & Daim, T. (2020). Towards the assessment of technology transfer capabilities: An action research-enhanced HDM model. Technology in Society, 60, 101217. https://doi.org/10.1016/j.techsoc.2019.101217
Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001
LeMay, S., Helms, M. M., Kimball, B., & McMahon, D. (2017). Supply chain management: The elusive concept and definition. The International Journal of Logistics Management, 28(4), 1425–1453. https://doi.org/10.1108/IJLM-10-2016-0232
Madugula, S., Pratapagiri, S., Phridviraj, M. S. B., Rao, V. C. S., Polala, N., & Kumaraswamy, P. (2023). Big data for the comprehensive data analysis of IT organizations. The Journal of High Technology Management Research, 34(2), 100465. https://doi.org/10.1016/j.hitech.2023.100465
Munkongsujarit, S., Schweinfort, W., Iskin, I., Colon, R., Tanatammatorn, N., Phopoonsak, N., & Almobarak, A. (2009). Decision model for a place to live at PSU: The case of international graduate students. PICMET ’09 - 2009 Portland International Conference on Management of Engineering & Technology, 513–534. Portland, OR, USA: IEEE. https://doi.org/10.1109/PICMET.2009.5262104
Pan, J. C.-H., & Wu, M.-H. (2009). A study of storage assignment problem for an order picking line in a pick-and-pass warehousing system. Computers & Industrial Engineering, 57(1), 261–268. https://doi.org/10.1016/j.cie.2008.11.026
Pandey, V., Sircar, A., Bist, N., Solanki, K., & Yadav, K. (2023). Accelerating the renewable energy sector through Industry 4.0: Optimization opportunities in the digital revolution. International Journal of Innovation Studies, 7(2), 171–188. https://doi.org/10.1016/j.ijis.2023.03.003
Seidel, R., Rachinger, B., Thielen, N., Schmidt, K., Meier, S., & Franke, J. (2023). Development and validation of a digital twin framework for SMT manufacturing. Computers in Industry, 145, 103831. https://doi.org/10.1016/j.compind.2022.103831
Singh, U., Dua, A., Kumar, N., Tanwar, S., Iqbal, R., Hijji, M., … Sharma, R. (2022). Scalable priority-based resource allocation scheme for M2M communication in LTE/LTE-A network. Computers and Electrical Engineering, 103, 108321. https://doi.org/10.1016/j.compeleceng.2022.108321
Wang, L.-C., Chen, C.-C., Liu, J.-L., & Chu, P.-C. (2021). Framework and deployment of a cloud-based advanced planning and scheduling system. Robotics and Computer-Integrated Manufacturing, 70, 102088. https://doi.org/10.1016/j.rcim.2020.102088
Zhang, G., Yang, Y., & Yang, G. (2023). Smart supply chain management in Industry 4.0: The review, research agenda and strategies in North America. Annals of Operations Research, 322(2), 1075–1117. https://doi.org/10.1007/s10479-022-04689-1

無法下載圖示 本全文未授權公開
QR CODE