簡易檢索 / 詳目顯示

研究生: 許辰頡
Hsu, Chen-Chieh
論文名稱: Symmetric Joint Distributions on Relative Statistics
Symmetric Joint Distributions on Relative Statistics
指導教授: 游森棚
Eu, Sen-Peng
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 30
中文關鍵詞: 排列逆序major indexdescent相對逆序Bruhat order對稱聯合函數
英文關鍵詞: permutations, inversion, major index, descent, relative inversion, Bruhat order, symmetric joint distribution
DOI URL: http://doi.org/10.6345/NTNU202000887
論文種類: 學術論文
相關次數: 點閱:156下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於一個 π ∈ Sn, 我們可以定義 σ ∈ Sn 相對於 π 的相對逆序 inv_π(σ) (relative inversion with respect to π), 這是與原來 π ∈ Sn 上的 inv 等分佈的統計量. 此定義推廣了 Gillespie 等人對 MacDonald 多項式的對稱性的研究中所定義的 k-inversion.
    本篇論文的主要結果 (Theorem 2.2.3) 是證明若 π1,π2 兩個排列上在 weak Bruhat order 上有連線且恰為一組相鄰位置對調, 則這兩個統計量 inv_π1, inv_π2 所形成的聯合分佈 (joint distribution) 是對稱的. 亦即 (inv_π1, inv_π2) ∼ (inv_π2, inv_π1).
    此外, 對於更細緻的聯合對稱分佈現象與 relative descent, relative major index 等, 我們也提出一些觀察與猜想.

    For a permutation π ∈ Sn, we can define the relative inversion inv_π(σ) of σ ∈ Sn with respect to π. The statistic inv_π has the same distribution with the standard inversion statsitics inv over Sn. This definition is motivated and generalized the k-inversion defined by Gillespie et al. in their work of seeking a combinatorial proof of the (still open) famous symmetric property of the MacDonald polynomials.
    The main result of this thesis (Theorem 2.2.3) is to prove that if π1, π2 is connected in the weak Bruhat order, then the two statistics inv_π1 and inv_π2 have the symmetric joint distribution (inv_π1, inv_π2) ∼ (inv_π2, inv_π1).
    Further observations on symmetry, relative descent and relative major index are also given.

    Contents 1 Introduction and Preliminary 1 1.1 Permutations and Mahonian statistics 1 1.2 Foata’s bijection 3 1.3 Symmetric joint distribution 6 1.4 Weak Bruhat order 8 1.5 Macdonald polynomial 10 2 Relative inversion 12 2.1 Relative inversions 12 2.2 Main results 15 3 Relative descent 20 3.1 Eulerian statistic and (Foata’s) fundamental bijection 20 3.2 Seeking for relative descent 21 4 Concluding remarks and problems 24 Bibliography 29

    [1] M. Gillespie, R. Kaliszewski, J. Morse, Macdonald symmetry at $q=1$ and a new class of inv-preserving bijections on words, arXiv:1611.04973v2 (2016).

    [2] E. Babson, E. Steingrımsson, Generalized permutation patterns and a classification of the Mahonian statistics, Sém. Lothar. Comb. 44 (B44b) (2000)

    [3] R. P. Stanley, Enumerative Combinatorics (Volume 1), second edition (2011), 41-44.

    [4] T. K. Petersen, Eulerian Numbers (2015), 98-99.

    [5] J. Haglund, A combinatorial model for the Macdonald polynomials, Proc. Natl. Acad. Sci. USA 101(46) (2004), 16127–16131.

    [6] J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for Macdonald polynomials, Jour. Amer. Math. Soc., 18 (2005), 735-761.

    [7] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14(4) (2001), 941–1006 (electronic).

    [8] P. A. MacMahon, Two applications of general theorems in combinatory analysis: (1) to the theory of inversions of permutations; (2) to the ascertainment of the numbers of terms in the development of a determinant which has amongst its elements an arbitrary number of zeros, Proc. London Math. Soc. (2) 15 (1916), 314–321.

    [9] D. Foata and D. Zeilberger, Denert’s permutation statistic is indeed Euler-Mahonian, Studies in Appl. Math. 83 (1990),31-59.

    [10] R. Simion and D. Stanton, Octabasic Laguerre polynomials and permutation statistics, J. Comput. Appl. Math. 68 (1996), 297-329.

    [11] M. Denert, The genus zeta function of hereditary orders in central simple algebras over global fields, Math. Comp. 54 (1990), 449-465.

    [12] R. J. Clarke, E. Steingr´ımsson and J. Zeng, New Euler-Mahonian statistics on permutations and words, Adv. in Appl. Math. 18 (1997), 237-270.

    [13] D. Foata and M.-P. Schützenberger, Major index and inversion number of permutations, Math. Machr. 83 (1978), 143–159.

    [14] I. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press (1979).

    [15] S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10(3) (1997), 565–596.

    [16] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141(1) (1995), 191–216.

    [17] A. Lascoux and M.-P. Schützenberger, Symmetry and flag manifolds, Invariant theory (Montecatini, 1982), volume 996 of Lecture Notes in Math. (1983), 118–144, Springer, Berlin.

    [18] P. Cartier, D. Foata, Problèmes combinatoires de permutations et réarrangements, Lecture Notes in Math. 85 (1969), Springer-Verlag, Berlin.

    下載圖示
    QR CODE