簡易檢索 / 詳目顯示

研究生: 范綵芳
Fan, Tsai-Fang
論文名稱: 臺南科學園區考古遺址血蚶殼體穩定碳氧同位素組成所反映距今5000年前以來之古環境意義
Paleoenvirnoment inferred from archaeological Tegillarca granosa shells of the Tainan Science Park, southwestern Taiwan since 5000 yr BP
指導教授: 米泓生
Mii, Horng-Sheng
李匡悌
Li, Kuang-Ti
口試委員: 米泓生
Mii, Horng-Sheng
李匡悌
Li, Kuang-Ti
李孟陽
Li, Meng-Yang
王士偉
Wang, Shih-Wei
口試日期: 2024/07/19
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 134
中文關鍵詞: 血蚶穩定碳氧同位素季節性臺南科學園區考古遺址
英文關鍵詞: Tegillarca granosa, Stable carbon and oxygen isotopes, Seasonality, Tainan Science Park Archaeology
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401711
論文種類: 學術論文
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由分析46枚於臺南科學園區所發掘的血蚶殼體的碳氧同位素記錄,重建過去約5000年以來臺灣西南部溫度及降雨強度的變化,並探討當時人類採集血蚶貝類的季節。
  分屬7個時期的11個考古遺址血蚶殼體氧同位素分析結果為:(1)大坌坑文化(距今5000至4200年前)南關里東遺址血蚶平均δ13C數值為-3.65±1.61‰(N=182),平均δ18O數值為-2.91±1.34‰。(2)牛稠子文化(距今4200至3300年前)右先方遺址血蚶平均δ13C數值為-3.11±1.03‰(N=132),平均δ18O數值為-2.79±1.17‰。(3)大湖文化大湖期(距今3300至2800年前)瘦砂遺址血蚶平均δ13C數值為-2.85±1.06‰(N=145),平均δ18O數值為-2.97±1.49‰。(4)大湖文化烏山頭期(距今2800至2000年前)王甲南與旗竿地二遺址血蚶平均δ13C數值為-2.53±1.33‰(N=559),平均δ18O數值為-3.02±1.37‰。(5)蔦松文化蔦松期蔦松文化蔦松期(距今1400至1000年前)木柵西、旗竿地遺址血蚶平均δ13C數值為-1.77±1.44‰(N=471),平均δ18O數值為-3.19±1.34‰。(6)西拉雅文化(距今500至300年前)社內遺址血蚶平均δ13C數值為-2.91±1.10‰(N=636;劉冠辰,2012),平均δ18O數值為-3.45±1.52‰。(7)近代漢人文化(距今300年前至現今)木柵、堤塘、埤子頭、王甲遺址血蚶平均δ13C數值為-2.45±1.14‰(N=1465),平均δ18O數值為-2.91±1.66‰。
  不同文化相的遺址血蚶碳同位素數值有較大的差異,這些差異較有可能與水體δ13CDIC之變化有關;大坌坑文化至牛稠子、大湖文化大湖期、大湖文化烏山頭期及蔦松文化蔦松期的δ18O數值均為-3‰左右,並無顯著差異;至西拉雅文化δ18O數值減小0.26‰,氣候可能變得較為暖/濕;至近代漢人文化δ18O數值大了0.54‰,氣候可能變得較為冷/乾;而近代漢人文化與現今則無顯著差異,數值均為-3‰左右。
  遺址血蚶氧同位素記錄呈現季節性震盪,單一殼體最高及最低氧同位素數值可分別反映出臺灣西南部的冬季及夏季記錄。大坌坑文化至牛稠子文化、大湖文化大湖期及大湖文化烏山頭期的冬季δ18O數值無顯著差異;至蔦松文化蔦松期冬季δ18O數值減小0.27‰,冬季溫度可能變得較高;至西拉雅文化冬季δ18O數值無顯著變化;至近代漢人文化冬季δ18O數值大了0.71‰,冬季氣溫可能變得較低。根據霰石溫度轉換方程式計算,近代漢人文化冬季溫度較距今5000至300年前冬季溫度低了1.6至2°C,且較現今溫度低了2.3°C,顯示近代漢人遺址血蚶可能記錄到了小冰期(LIA,Little Ice Age;西元1250至1860年)的北半球降溫時期。此外,近代漢人文化及大湖文化大湖期較小的血蚶夏季δ18O數值顯示小冰期及距今3300至2800年前可能有較多的夏季降雨量,而降雨量之增加可能與颱風頻率增加相關。
  血蚶氧同位素數值可能可以反映殼體的採集季節,大坌坑文化南關里東遺址血蚶採收季節主要為春季(67%;N=3);牛稠子文化右先方遺址血蚶採收季節主要為春季(67%;N=3),其次為冬季(33%);大湖文化大湖期瘦砂遺址血蚶採收季節主要為春季(100%;N=2);大湖文化烏山頭期王甲南遺址血蚶採收季節主要為夏季(75%;N=4),其次為秋季(25%),旗竿地二遺址血蚶採收季節主要為冬季及春季(80%;N=5);蔦松文化蔦松期木柵西遺址血蚶採收季節為秋季(100%;N=1),旗竿地遺址血蚶採收季節主要為春季(67%;N=6);西拉雅文化社內遺址血蚶採收季節主要為秋季(40%;N=53),其次為夏季(32%);近代漢人文化木柵遺址血蚶採收季節主要為春季(100%;N=3),堤塘遺址血蚶採收季節主要為夏季(80%;N=5),埤子頭遺址血蚶採收季節主要為冬季(80%;N=5),王甲遺址血蚶採收季節主要為春季(60%;N=5)。整體而言,距今5000年前以來遺址人類較常在春、夏季採集血蚶。

This study reconstructs the variations in rainfall intensity and temperature of southwestern Taiwan over the past 5000 yr BP by analyzing the stable carbon and oxygen isotope records of 46 Tegillarca granosa shells collected from archaeological sites in Tainan Science Park. It also explores the seasons in which humans collected T. granosa.
  The stable oxygen isotope values of archaeological T. granosa shells are as follows: the T. granosa collected from Dabenkeng culture(5000-4200 yr BP), NKLE site (Nanguanli East Site) have an average δ13C value of -3.65±1.61‰ (N=182) and an average δ18O value of -2.91±1.34‰; the Niuchouzi culture (4200-3300 yr BP), YHF site (Youxianfang Site) have an average δ13C value of -3.11±1.03‰ (N=132) and an average δ18O value of -2.79±1.17‰; the Dahu culture, Dahu Phase(3300-2800 yr BP), SOS (Shousha Site) site have an average δ13C value of -2.85±1.06‰(N=145) and an average δ18O value of -2.97±1.49‰; the Dahu culture, Wushantou Phase (2800-2000 yr BP), WCS site(Wangjia South Site)and CKT2 site(Qigandi 2 Site) have an average δ13C value of -2.53±1.33‰(N=559) and an average δ18O value of -3.02±1.37‰; the Niaosong culture, Niaosong Phase(1400-1000 yr BP), MCW(Muzha WestSite)and CKT(Qigandi Site)sites have an average δ13C value of -1.77±1.44‰(N=471) and an average δ18O value of -3.19±1.34‰; the Siraya culture(500-300 yr BP), SN(Shenei Site)site have an average δ13C value of -2.91±1.10‰ (N=636;劉冠辰,2012) and an average δ18O value of -3.45±1.52‰; Han Chinese culture (300 yr BP to present), MC(Muzha Site), TT(Titang Site) , PTT(Pizitou Site) and WC(Wangjia Site) sites have an average δ13C value of -2.45±1.14‰ (N=1465) and an average δ18O value of -2.91±1.66‰.
  The stable carbon isotope values of T. granosa from different cultural phases show significant differences, which are likely related to changes in the δ13CDIC of the water. The δ18O average values from the Dabenkeng culture to the Niuchouzi culture, Dahu culture, Dahu Phase, Dahu culture, Wushantou Phase, and Niaosong culture, Niaosong Phase are all around -3‰, with no significant differences. In the Siraya culture, the δ18O values decreased by 0.26‰, suggesting that the climate may have become warmer/wetter. In the Han Chinese culture, the δ18O values increased by 0.54‰, indicating that the climate may have become colder/drier. There is no significant difference between the modern Han Chinese culture and the present, with values around -3‰.
  The winter δ18O values of T. granosa from the Dabenkeng culture to the Niuchouzi culture, Dahu culture, Dahu Phase, and Dahu culture, Wushantou Phase shows no significant differences. The Niaosong culture, Niaosong Phase shows a decrease of 0.27‰ in winter δ18O values, indicating potentially higher winter temperatures. The Siraya culture shows no significant change in winter δ18O values. The Han Chinese culture shows an increase of 0.71‰ in winter δ18O values, suggesting potentially lower winter temperatures. According to the aragonite oxygen isotope and temperature equation, the winter temperatures during the Han Chinese culture were 1.6-2°C lower than those from 5000 to 300 yr BP and were 2.3°C lower than present temperatures. This suggests that T. granosa collected from Han Chinese culture may have recorded the Little Ice Age, a cooling period of north hemisphere. Additionally, the summer lower δ18O values of T. granosa shells collected from Dahu culture, Dahu Phase and Han Chinese culture indicate that the Little Ice Age and the period from 3,300 to 2,800 yr BP may have experienced higher summer rainfall, which may be related to typhoons.
  The oxygen isotope values of T. granosa might reflect the season in which the shells were collected. At NKLE site of Dabenkeng Culture, T. granosa was primarily harvested in the spring (67%; N=3). At YHF site of Niuchouzi Culture, T. granosa was mainly harvested in the spring (67%; N=3), followed by winter (33%). At SOS site of Dahu Culture, T. granosa was harvested mainly in the spring (100%; N=2). At WCS site of Dahu Culture,Wushantou phase, T. granosa was primarily harvested in the summer (75%; N=4), followed by autumn (25%). At the CKT2 site, T. granosa was harvested mainly in the winter and spring (80%; N=5). At MCW site of Niaosong Culture, Niaosong phase, T. granosa was harvested in the autumn (100%; N=1), and at CKT site, it was mainly harvested in the spring (67%; N=6). At SN site of Siraya Culture, T. granosa was primarily harvested in the autumn (40%; N=53), followed by summer (32%). At Han Chinese Culture, T. granosa was harvested mainly in the spring (100%; N=3) at MC site, in the summer (80%; N=5) at TT site, in the winter (80%; N=5) at the PTT site, and mainly in the spring (60%; N=5) at the WC site. Overall, humans were more commonly harvesting T. granosa in the spring and summer over the past 5000 B.P..

中文摘要 i ABSTRACT iv 致謝 vii 目錄 viii 圖目錄 x 表目錄 xiii 第一章、緒論 1 1.1 前言 1 1.2 生物殼體穩定碳氧同位素之原理及應用 1 1.3 微量元素原理及應用 4 1.4 臺灣距今5000年前以來之氣候變遷 5 1.5 臺灣西南部海岸環境變遷 9 1.5.1 臺南海岸線變遷 9 1.5.2 臺南科學園區環境變遷 13 1.5.3 前人研究 14 第二章、研究區域與材料 16 2.1 研究地點 16 2.1.1 現代環境背景 18 2.2 研究材料 18 第三章、研究方法 21 3.1 穩定碳氧同位素 21 3.2 拉曼光譜分析 22 3.3 微量元素分析 22 第四章、結果與討論 23 4.1 標本觀察 23 4.2 拉曼光譜分析結果 23 4.3 碳氧同位素分析結果 29 4.3.1 血蚶殼體氧同位素數值紀錄 29 4.3.2 殼體氧同位素季節性 34 4.3.3 碳氧同位素記錄與古環境之討論 53 4.4 微量元素元素分析結果 63 4.5 霰石與方解石質標本Fe/Ca比值、Mn/Ca比值及δ18O數值組成比較 76 4.5.1 Fe/Ca比值與Mn/Ca比值 77 4.5.2 方解石血蚶與霰石血蚶殼體碳氧同位素比較 78 第五章、結論 81 參考文獻 83 附錄 90

何雲達,2005。血蚶養殖。台灣農家要覽。共5頁。
呂香儒,2009。台灣西南地區現生牡蠣與考古遺址出土牡蠣殼體穩定同位素所反映之水體環境意義。國立臺灣師範大學地球科學系碩士論文,共118頁。
阮孟靈,2018。臺灣南科考古遺址群出土長牡蠣貝殼穩定同位素所反映的全新世中晚期古環境。國立臺灣師範大學地球科學系碩士論文,共81頁。
林朝棨,1961。臺灣西南部之貝塚與其地史學意義。國立臺灣大學考古人類學刊第15-16期,第49-94頁。
張世安,2020。台灣南部現生牡蠣殼體與水體之穩定同位素記錄及其應用。國立臺灣師範大學地球科學系碩士論文,共105頁。
張瑞津, 石再添, 陳翰霖,1996。台灣西南部台南海岸平原地形變遷之研究。 國立台灣師範大學地理學系,地理研究報告,共19頁。
曹永和,1962。歐洲古地圖上之臺灣。臺北市文獻委員發行。
陳昱琪,2016。臺灣臺南七股現生牡蠣殼體穩定氧同位素記錄及其於季節性之應用。國立臺灣師範大學地球科學系碩士論文,共145頁。
彭宗仁, 汪中和,1989。苗栗白沙屯過港貝化石層內軟體動物化石之碳氧同位素研究。國立中山大學海洋地質研究所碩士論文,共75頁。
游峻一,2003。應用直流電阻法與人控音頻大地電磁波法研究台灣西南海岸平原環境變遷。國立中央大學地球物理研究所博士論文,共157頁。
黃映璇,2012。四千年前北越Đầu Rằm遺址貝類殼體穩定碳氧同位素所反映之環境意義。國立臺灣師範大學地球科學系碩士論文,共83頁。
楊詠然,2016。末次最大冰期以來台灣西部平原的環境變遷。國立臺灣大學地質科學研究所碩士論文,共159頁。
臧振華, 李匡悌,2004。臺南科學工業園區道爺遺址未劃入保存區部分搶救考古計劃期末報告。中研院歷史語言研究所。共466頁。
臧振華, 李匡悌,2009。台南科學工業園區搶救出土考古遺存整理分析計畫(第一階段第二年)研究成果報告(完整版) 。中央研究院歷史語言研究所。共1297頁。
臧振華, 李匡悌,2013。南科的古文明。國立臺灣史前文化博物館。共378頁。
劉冠辰,2012。臺灣臺南社內遺址血蚶與現生血蚶殼體穩定碳氧同位素組成之環境意涵。國立臺灣師範大學地球科學系碩士論文,共73頁。
蔡英亞,1992。泥蚶的半人工育苗與蓄水養成:養魚世界,第12期。
Anderson, T. F., Arthur, M. A., F., T., Kaplan, I. R., Veizer, J.and Land, L. S., 1980, Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements: Journal of Sedimentary Research, v. 50, no. 4, p. 1219-1236.
Anderson, T. F., Arthur, M. A., Kaplan, I. R., Veizer, J.and Land, L. S., 1983, Stable Isotopes of Oxygen and Carbon and their Application to Sedimentologic and Paleoenvironmental Problems, Stable Isotopes in Sedimentary Geology, Volume 10, SEPM Society for Sedimentary Geology, p. 0.
Beck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., Joannot, P.and Henin, C., 1992, Sea-surface temperature from coral skeletal strontium/calcium ratios: Science, v. 257, no. 5070, p. 644-647.
Brand, U.and Veizer, J., 1980, Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements: Journal of Sedimentary Research, v. 50, no. 4, p. 1219-1236.
Broecker, W. S., 1982, Ocean chemistry during glacial time: Geochimica et cosmochimica acta, v. 46, no. 10, p. 1689-1705.
Brosset, C., Höche, N., Shirai, K., Nishida, K., Mertz-Kraus, R.and Schöne, B. R., 2022, Strong coupling between biomineral morphology and Sr/Ca of Arctica islandica (Bivalvia)—Implications for Shell Sr/Ca-Based Temperature Estimates: Minerals, v. 12, no. 5, p. 500.
Cartapanis, O., Jonkers, L., Moffa-Sanchez, P., Jaccard, S. L.and de Vernal, A., 2022, Complex spatio-temporal structure of the Holocene Thermal Maximum: Nature Communications, v. 13, no. 1, p. 5662.
Change, I. C., 2014, Mitigation of climate change: Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, v. 1454, p. 147.
Chen, F., Xu, Q., Chen, J., Birks, H. J. B., Liu, J., Zhang, S., Jin, L., An, C., Telford, R. J., Cao, X., Wang, Z., Zhang, X., Selvaraj, K., Lu, H., Li, Y., Zheng, Z., Wang, H., Zhou, A., Dong, G., Zhang, J., Huang, X., Bloemendal, J.and Rao, Z., 2015, East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 5, 11186.
Chen, J., Li, T., Nan, Q., Shi, X.and Liu, Y., 2019, Mid-late Holocene rainfall variation in Taiwan: a high-resolution multi-proxy record unravels the dual influence of the Asian monsoon and ENSO: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 516, p. 139-151.
Chen, Y.-G.and Liu, T.-K., 1996, Sea Level Changes in the Last Several Thousand Years, Penghu Islands, Taiwan Strait: Quaternary Research, v. 45, no. 3, p. 254-262.
Chen, Y.-G.and Liu, T.-K., 2000, Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan: Quaternary Science Reviews, v. 19, no. 9, p. 923-930.
Compston, W., 1960, The carbon isotopic compositions of certain marine invertebrates and coals from the Australian Permian: Geochimica et Cosmochimica Acta, v. 18, no. 1, p. 1-22.
Craig, H.and Gordon, L. I., 1965, Deuterium and oxygen‐18 isotope composition of precipitation and atmospheric moisture: Hydrological processes.
Ding, X., Zheng, L., Zheng, X.and Kao, S.-J., 2020, Holocene East Asian summer monsoon rainfall variability in Taiwan: Frontiers in Earth Science, v. 8, p. 234.
Dodd, J.and Crisp, P., Palaeoclimatology, Palaeoecology, 1982, Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 38, no. 1-2, p. 45-56.
Dodd, J. R., 1965, Environmental control of strontium and magnesium in Mytilus: Geochimica et Cosmochimica Acta, v. 29, no. 5, p. 385-398.
Füllenbach, C. S., Schöne, B. R.and Mertz-Kraus, R., 2015, Strontium/lithium ratio in aragonitic shells of Cerastoderma edule (Bivalvia) — A new potential temperature proxy for brackish environments: Chemical Geology, v. 417, p. 341-355.
Gaetani, G. A.and Cohen, A. L., 2006, Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies: Geochimica et Cosmochimica Acta, v. 70, no. 18, p. 4617-4634.
George, A., Shen, B., Craven, M., Wang, Y., Kang, D., Wu, C.and Tu, X., 2021, A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization: Renewable and Sustainable Energy Reviews, v. 135, p. 109702.
Gillikin, D. P., Lorrain, A., Meng, L.and Dehairs, F., 2007, A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells: Geochimica et Cosmochimica Acta, v. 71, no. 12, p. 2936-2946.
Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., André, L., Keppens, E., Baeyens, W.and Dehairs, F., 2005, Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells: Geochemistry, Geophysics, Geosystems, v. 6, no. 5.
Gonfiantini, R., 1986, Environmental isotopes in lake studies: Handbook of environmental isotope geochemistry.
Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B., Mazzullo, S. J.and Mii, H.-s., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, no. 3, p. 222-233.
Hallmann, N., Burchell, M., Schöne, B. R., Irvine, G. V.and Maxwell, D., 2009, High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality: Journal of Archaeological Science, v. 36, no. 10, p. 2353-2364.
Hart, S. R.and Blusztajn, J., 1998, Clams as recorders of ocean ridge volcanism and hydrothermal vent field activity: Science, v. 280, no. 5365, p. 883-886.
Hays, P. D.and Grossman, E. L., 1991, Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate: Geology, v. 19, no. 5, p. 441-444.
Hendy, E., Gagan, M., Lough, J., McCulloch, M.and DeMenocal, P., 2007, Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals: Paleoceanography, v. 22, no. 4.
Hou, L., Li, H., Zheng, C., Ma, Q., Wang, C., Wang, X.and Qu, W., 2016, Seawater-groundwater exchange in a silty tidal flat in the south coast of Laizhou Bay, China: Journal of Coastal Research, no. 74, p. 136-148.
Huang, J., Wan, S., Xiong, Z., Zhao, D., Liu, X., Li, A.and Li, T., 2016, Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 871-881.
Hudson, J. D.and Anderson, T. F., 1989, Ocean temperatures and isotopic compositions through time: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 80, no. 3-4, p. 183-192.
Issel, R.and Bayon, H., 1914, A Morphological study of strongylus douglasi, Cobbold: Transactions of the Royal Society of South Africa, v. 4, no. 1, p. 259-272.
Jiménez-Berrocoso, Á., Zuluaga, M. C.and Elorza, J., 2004, Minor-and trace-element intra-shell variations in Santonian inoceramids (Basque-Cantabrian Basin, northern Spain): diagenetic and primary causes: Facies, v. 50, p. 35-60.
Kaufmann, G., 2003, Stalagmite growth and palaeo-climate: the numerical perspective: Earth and Planetary Science Letters, v. 214, no. 1-2, p. 251-266.
Killingley, J. S.and Berger, W. H., 1979, Stable isotopes in a mollusk shell: detection of upwelling events: Science, v. 205, no. 4402, p. 186-188.
Kim, H.and Timmermann, A., 2024, Seawater oxygen isotopes as a tool for monitoring future meltwater from the Antarctic ice-sheet: Communications Earth & Environment, v. 5, no. 1, p. 343.
Kinsman, D. J.and Holland, H. D., 1969, The co-precipitation of cations with CaCO3—IV. The co-precipitation of Sr2+ with aragonite between 16° and 96° C: Geochimica et Cosmochimica Acta, v. 33, no. 1, p. 1-17.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y.and Sambridge, M., 2014, Sea level and global ice volumes from the Last Glacial Maximum to the Holocene: Proceedings of the National Academy of Sciences, v. 111, no. 43, p. 15296-15303.
Lee, C.-Y.and Liew, P.-M., 2010, Late Quaternary vegetation and climate changes inferred from a pollen record of Dongyuan Lake in southern Taiwan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 287, no. 1-4, p. 58-66.
Li, H.-C., Liew, P.-M., Seki, O., Kuo, T.-S., Kawamura, K., Wang, L.-C.and Lee, T.-Q., 2013, Paleoclimate variability in central Taiwan during the past 30 Kyrs reflected by pollen, δ13C、TOC, and n-alkane-δD records in a peat sequence from Toushe Basin: Journal of Asian Earth Sciences, v. 69, p. 166-176.
Liew, P.-M., Huang, S.-Y.and Kuo, C.-M., 2006, Pollen stratigraphy, vegetation and environment of the last glacial and Holocene—a record from Toushe Basin, central Taiwan: Quaternary International, v. 147, no. 1, p. 16-33.
Liew, P.-M., Wu, M.-H., Lee, C.-Y., Chang, C.-L.and Lee, T.-Q., 2014, Recent 4000 years of climatic trends based on pollen records from lakes and a bog in Taiwan: Quaternary International, v. 349, p. 105-112.
Liew, P., Lee, C.and Kuo, C., 2006, Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan: Earth and Planetary Science Letters, v. 250, no. 3-4, p. 596-605.
Lin, S.-F., Huang, T.-C., Liew, P.-M.and Chen, S.-H., 2007, A palynological study of environmental changes and their implication for prehistoric settlement in the Ilan Plain, northeastern Taiwan: Vegetation history and Archaeobotany, v. 16, p. 127-138.
Müller, P., Staudigel, P. T., Murray, S. T., Vernet, R., Barusseau, J.-P., Westphal, H.and Swart, P. K., 2017, Prehistoric cooking versus accurate palaeotemperature records in shell midden constituents: Scientific reports, v. 7, no. 1, p. 3555.
Majoube, M., 1971, Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur: Journal de Chimie Physique, v. 68, p. 1423-1436.
Mann, M. E., 2002, Little ice age: Encyclopedia of global environmental change, v. 1, no. 504, p. e509.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G.and Ni, F., 2009, Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly: Encyclopedia of global environmental change, v. 326, no. 5957, p. 1256-1260.
McConnaughey, T. A., Burdett, J., Whelan, J. F.and Paull, C. K. J. G. e. C. A., 1997, Carbon isotopes in biological carbonates: respiration and photosynthesis: Geochimica et Cosmochimica Acta, v. 61, no. 3, p. 611-622.
McConnaughey, T. A.and Gillikin, D. P., 2008, Carbon isotopes in mollusk shell carbonates: Geo-Marine Letters, v. 28, p. 287-299.
McCorkle, D. C., Keigwin, L. D., Corliss, B. H.and Emerson, S. R., 1990, The influence of microhabitats on the carbon isotopic composition of deep‐sea benthic foraminifera: Paleoceanography, v. 5, no. 2, p. 161-185.
McCulloch, M., Mortimer, G., Esat, T., Xianhua, L., Pillans, B.and Chappell, J., 1996, High resolution windows into early Holocene climate: SrCa coral records from the Huon Peninsula: Earth and Planetary Science Letters, v. 138, no. 1, p. 169-178.
McDermott, F., 2004, Palaeo-climate reconstruction from stable isotope variations in speleothems: a review: Quaternary Science Reviews, v. 23, no. 7-8, p. 901-918.
Mii, H.-s., Grossman, E. L.and Yancey, T. E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: GSA Bulletin, v. 111, no. 7, p. 960-973.
Mitchell, L., Fallick, A. E.and Curry, G. B., 1994, Stable carbon and oxygen isotope compositions of mollusc shells from Britain and New Zealand: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 111, no. 3-4, p. 207-216.
Neori, A.and Holm-Hansen, O., 1982, Effect of temperature on rate of photosynthesis in Antarctic phytoplankton: Polar Biology, v. 1, no. 1, p. 33-38.
O'Brien, S. R., Mayewski, P. A., Meeker, L. D., Meese, D. A., Twickler, M. S.and Whitlow, S., 1995, Complexity of Holocene climate as reconstructed from a Greenland ice core: Science, v. 270, no. 5244, p. 1962-1964.
O'Leary, M. H., 1988, Carbon isotopes in photosynthesis: Bioscience, v. 38, no. 5, p. 328-336.
Patricola, C. M., Camargo, S. J., Klotzbach, P. J., Saravanan, R.and Chang, P., 2018, The influence of ENSO flavors on western North Pacific tropical cyclone activity: Journal of Climate, v. 31, no. 14, p. 5395-5416.
Peltier, W. R., 2002, On eustatic sea level history: Last Glacial Maximum to Holocene: Quaternary Science Reviews, v. 21, no. 1-3, p. 377-396.
Phuc, T., 1997, Biological characters and technique of oyster Anadara granosa culture at Tra Vinh coastal water: Fish Rev, v. 6.
Poulain, C., Gillikin, D., Thébault, J., Munaron, J.-M., Bohn, M., Robert, R., Paulet, Y.-M.and Lorrain, A., 2015, An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells: Chemical geology, v. 396, p. 42-50.
Poulain, C., Lorrain, A., Mas, R., Gillikin, D. P., Dehairs, F., Robert, R.and Paulet, Y.-M., 2010, Experimental shift of diet and DIC stable carbon isotopes: Influence on shell δ13C values in the Manila clam Ruditapes philippinarum: Chemical Geology, v. 272, no. 1-4, p. 75-82.
Purton, L. M. A., Shields, G. A., Brasier, M. D.and Grime, G. W., 1999, Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks: Geology, v. 27, no. 12, p. 1083-1086.
Ravelo, A. C.and Hillaire-Marcel, C., 2007, Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography: Developments in marine geology, v. 1, p. 735-764.
Reis, A., Erhardt, A. M., McGlue, M. M.and Waite, L., 2019, Evaluating the effects of diagenesis on the δ13C and δ18O compositions of carbonates in a mud-rich depositional environment: A case study from the Midland Basin, USA: Chemical Geology, v. 524, p. 196-212.
Rohling, E. J., 2013, Oxygen isotope composition of seawater: The Encyclopedia of Quaternary Science, v. 2, p. 915-922.
Rosenthal, Y., Boyle, E. A.and Slowey, N., 1997, Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography: Geochimica et Cosmochimica Acta, v. 61, no. 17, p. 3633-3643.
Rosenthal, Y., Lear, C. H., Oppo, D. W.and Linsley, B. K., 2006, Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans: Paleoceanography, v. 21, no. 1.
Schöne, B. R., Zhang, Z., Radermacher, P., Thébault, J., Jacob, D. E., Nunn, E. V.and Maurer, A.-F., 2011, Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 302, no. 1-2, p. 52-64.
Shen, C.-C., Lee, T., Chen, C.-Y., Wang, C.-H., Dai, C.-F.and Li, L.-A., 1996, The calibration of D [Sr/Ca] versus sea surface temperature relationship for Porites corals: Geochimica et Cosmochimica Acta, v. 60, no. 20, p. 3849-3858.
Siegenthaler, U., Stable hydrogen and oxygen isotopes in the water cycle, in Proceedings Lectures in isotope geology1979, Springer, p. 264-273.
Smith, S., Buddemeier, R., Redalje, R.and Houck, J., 1979, Strontium-calcium thermometry in coral skeletons: Science, v. 204, no. 4391, p. 404-407.
Staudigel, P. T.and Swart, P. K., 2016, Isotopic behavior during the aragonite-calcite transition: Implications for sample preparation and proxy interpretation: Chemical Geology, v. 442, p. 130-138.
Stecher, H. A., Krantz, D., Lord III, C., Luther III, G.and Bock, K., 1996, Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells: Geochimica et Cosmochimica Acta, v. 60, no. 18, p. 3445-3456.
Stocker, T., 2014, Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge university press.
Takesue, R. K.and van Geen, A., 2004, Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region: Geochimica et Cosmochimica Acta, v. 68, no. 19, p. 3845-3861.
Toland, H., Perkins, B., Pearce, N., Keenan, F.and Leng, M. J., 2000, A study of sclerochronology by laser ablation ICP-MS: Journal of Analytical Atomic Spectrometry, v. 15, no. 9, p. 1143-1148.
Wanamaker, A. D.and Gillikin, D. P., 2019, Strontium, magnesium, and barium incorporation in aragonitic shells of juvenile Arctica islandica: Insights from temperature controlled experiments: Chemical Geology, v. 526, p. 117-129.
Wang, F., Arseneault, D., Pan, B., Liao, Q.and Sugiyama, J., 2019, Pre-1930 unstable relationship between climate and tree-ring width of Pinus taiwanensis hayata in southeastern China: Dendrochronologia, v. 57, p. 125629.
Wang, L.-C., 2024, Subtropical montane vegetation dynamics in response to Holocene climate change in central Taiwan: Vegetation History Archaeobotany, p. 1-13.
Wang, L.-C., Behling, H., Kao, S.-J., Li, H.-C., Selvaraj, K., Hsieh, M.-L.and Chang, Y.-P., 2015, Late Holocene environment of subalpine northeastern Taiwan from pollen and diatom analysis of lake sediments: Journal of Asian Earth Sciences, v. 114, p. 447-456.
Wang, L.-C., Behling, H., Lee, T.-Q., Li, H.-C., Huh, C.-A., Shiau, L.-J., Chen, S.-H.and Wu, J.-T., 2013, Increased precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake: Journal of Paleolimnology, v. 49, p. 619-631.
Wang, L.-C., Chou, Y.-M., Chen, H.-F., Chang, Y.-P., Chiang, H.-W., Yang, T.-N., Shiau, L.-J.and Chen, Y.-G., 2022, Paleolimnological evidence for lacustrine environmental evolution and paleo-typhoon records during the late Holocene in eastern Taiwan: Journal of Paleolimnology, p. 1-17.
Wang, L.-C., Wu, J.-T., Lee, T.-Q., Lee, P.-F.and Chen, S.-H., 2011, Climate changes inferred from integrated multi-site pollen data in northern Taiwan: Journal of Asian Earth Sciences, v. 40, no. 6, p. 1164-1170.
Weber, J. N., 1973, Incorporation of strontium into reef coral skeletal carbonate: Geochimica et Cosmochimica Acta, v. 37, no. 9, p. 2173-2190.
Wit, J. C., De Nooijer, L., Wolthers, M.and Reichart, G.-J., 2013, A novel salinity proxy based on Na incorporation into foraminiferal calcite: Biogeosciences, v. 10, no. 10, p. 6375-6387.
Yang, T.-N., Lee, T.-Q., Meyers, P. A., Song, S.-R., Kao, S.-J., Löwemark, L., Chen, R.-F., Chen, H.-F., Wei, K.-Y.and Fan, C.-W., 2011, Variations in monsoonal rainfall over the last 21 kyr inferred from sedimentary organic matter in Tung-Yuan Pond, southern Taiwan: Quaternary Science Reviews, v. 30, no. 23-24, p. 3413-3422.
Yin, Y., Gemmer, M., Luo, Y.and Wang, Y., 2010, Tropical cyclones and heavy rainfall in Fujian Province, China: Quaternary International, v. 226, no. 1-2, p. 122-128.
Yu, K.-F., Zhao, J.-X., Wei, G.-J., Cheng, X.-R.and Wang, P.-X., 2005, Mid–late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea: Global and Planetary Change, v. 47, no. 2, p. 301-316.
Zhu, Z., Feinberg, J. M., Xie, S., Bourne, M. D., Huang, C., Hu, C.and Cheng, H., 2017, Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China: Proceedings of the National Academy of Sciences, v. 114, no. 5, p. 852-857.
Zong, Y., 2004, Mid-Holocene sea-level highstand along the Southeast Coast of China: Quaternary International, v. 117, no. 1, p. 55-67.

下載圖示
QR CODE