簡易檢索 / 詳目顯示

研究生: 林明顯
Lin, Ming-Hsien
論文名稱: 利用眼球追蹤技術分析高中學生能力導向問題解決之表現與視覺注意力之關係
Using the Eye-Tracking Method to Analyze High School Students’ Performance of Solving Competency-Based Problems and the Relation with Visual Attention
指導教授: 楊芳瑩
Yang, Fang-Ying
口試委員: 楊芳瑩
Yang, Fang-Ying
蔡孟蓉
Tsai, Meng-Jung
許衷源
Hsu, Chung-Yuan
口試日期: 2025/01/23
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 問題解決探究導向能力導向眼球追蹤學習表現
英文關鍵詞: Problem solving, inquiry based, competency-based, eye tracking, learning performance
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500449
論文種類: 學術論文
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究參考十二年國民基本教育課程綱要中的學習表現項目及PISA 2025的評量架構,設計出數位互動且跨域的探究情境題組,共15道試題,滿分為17分。依據探究實作的學習表現,本研究將測驗內容分為四大面向,包含「觀察與定題(o)」、「計畫與執行(e)」、「分析與發現(a)」與「討論與傳達(c)」。施測對象為修習過探究與實作課程之35名高中二年級學生,受試者於線上數位平台上進行測驗,在作答的同時,利用Tobii 4C眼動儀收取受試者在作答時的眼動資料,然後依據不同的學習表現進行分組,最後使用重複測量單因子相依變異數分析(Repeated Measured ANOVA)歸納學生在不同能力導向問題解決表現的趨勢;以皮爾森相關(Pearson Correlation)分析不同能力導向問題解決表現與視覺注意力的關係。
    研究結果顯示,學生受測最高分為15分,最低分為4.5分,平均分數為9.6分,標準差為2.9分。進一步分析不同題型之表現結果顯示,學生的討論與傳達(c)表現最好,計畫與執行(e)表現最差。而與PISA 2025的評量架構的能力項目對應後,可知學生具有「以科學的角度解釋現象」的能力,但是較缺乏「建構和評估科學的探究活動,並批判性地詮釋科學數據與證據」。於解題過程中,學生在分析與發現(a)題型上的的注意力分配最多,也呈現最多處理、整合訊息的時間;在討論與傳達(c)的面向上,初步文字理解的時間最長;在計畫與執行(e)題型上的的平均凝視時間最高。各問題解決面向的總分與AOI眼動的相關分析結果顯示,觀察與定題(o)得分與錯誤選項的凝視時間百分比相關、計畫與執行(e)得分與正確選項上的掃視時間有關;分析與發現(a)得分與在問答題上的總花費時間及掃視時間有關;討論與傳達(c)總分則與圖表上的凝視時間百分比、再次造訪凝視時間、總凝視時間、總花費時間、掃視時間等眼動指標有關。

    The aim of the study was to design and test a computerized interactive competency-based assessment based on the performance indicators for the inquiry learning in the Taiwanese 12-Year Basic Education Curriculum Guidelines as well as PISA 2025 science framework. The test, consisted of 15 questions, has a full score of 17 points. According to the Curriculum Guideline, the test items were divided into four inquiry dimensions: Observation and Definition (o), Planning and Execution (e), Analysis and Discovery (a), Discussion and Communication (c). Thirty-five eleventh grade students, who had completed inquiry and practice courses, were invited to take the test on an online digital platform while their eye movement data was collected  using a Tobii 4C eye tracker. In addition to finding the performance trend of solving problems of different inquiry dimension using descriptive statistics, participants’ eye movement data were analyzed using repeated measured ANOVA and Pearson correlation to find the relations between the visual attention during problem solving and test performances.
    The results showed that the test scores ranged from 4.5 to 15 points, with a mean of 9.6 and standard deviation of 2.9. Further analysis showed that students performed best in the inquiry dimensions of Discussion and Communication (c) and poorest in the dimension of Planning and Execution (e). By cross-checking with the PISA 2025 science framework, it was inferred that students performed better in competency of “explaining phenomena scientifically” but weaker in “constructing and evaluating designs and interpreting scientific data and evidence critically”.
    During problem solving, students allocated most of their visual attention to the dimension of Analysis and Discovery (a), indicated by the longest information processing and integration time. For the dimension of Discussion and Communication (c), students spent the longest time reading the initial text information. For Planning and Execution (e), students showed the highest average fixation duration. Results of the correlation analysis revealed that (1) scores of Observation and Definition (o) correlated significantly with the proportion of fixation duration on incorrect choices; (2) scores of Planning and Execution (e) correlated significantly with the sum of saccade duration on correct choices; (3) scores of Analysis and Discovery (a) correlated significantly with the total time spent and the sum of saccade duration in AOIs of question and the written-response question; (4) scores of Discussion and Communication (c) correlated with the proportion of fixation duration, revisited fixation duration, total fixation duration, total time spent and  sum of saccade duration on graphics.

    誌 謝 i 摘 要 ii Abstract iii 目 次 v 表 次 vii 圖 次 viii 第一章 緒論 1 第一節 研究背景與研究動機 1 第二節 研究目的與研究問題 2 第三節 專有名詞解釋 2 第四節 研究限制 3 第二章 文獻探討 5 第一節 素養導向與能力 (competence) 5 第二節 問題解決文獻評析 – 以物理學科為例 7 第三節 數位試題的發展與應用 8 第四節 眼球追蹤技術於問題解決相關問題之應用 9 第三章 研究方法 12 第一節 研究對象 12 第二節 研究工具 12 第三節 資料分析 21 第四節 研究流程 25 第四章 研究結果 27 第一節 學生問題解決能力整體表現 27 第二節 解題過程中的注意力分析 31 第三節 測驗表現與眼動資料的相關結果 37 第五章 結論與建議 43 第一節 學生的學習表現趨勢 43 第二節 不同學習表現項目的訊息處理認知活動分析 44 第三節 解題表現與訊息處理的認知活動之關係 46 第四節 研究結果之教育意義 47 參考文獻 49 附錄一 AOI畫製 52 附錄二 學生作答狀況 59

    Alruwais, N., Wills, G., & Wald, M. (2018). Advantages and challenges of using e-assessment. International Journal of Information and Education Technology, 8(1), 34-37.
    Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive science, 5(2), 121-152.
    Desmet, C., & Diependaele, K. (2019). An eye-tracking study on the road examining the effects of handsfree phoning on visual attention. Transportation research part F: traffic psychology and behaviour, 60, 549-559.
    Findlay, J. M., Brown, V., & Gilchrist, I. D. (2001). Saccade target selection in visual search: The effect of information from the previous fixation. Vision research, 41(1), 87-95.
    Hicks, B. L., & Hyde, D. C. (1973). Teaching about CAI. Journal of teacher education, 24(2), 120-125.
    James, W. (1890). The principles of psychology. Henry Holt.
    Just, M. A., & Carpenter, P. A. (1980). A theory of reading: from eye fixations to comprehension. Psychological review, 87(4), 329.
    Lai, M.-L., Tsai, M.-J., Yang, F.-Y., Hsu, C.-Y., Liu, T.-C., Lee, S. W.-Y., Lee, M.-H., Chiou, G.-L., Liang, J.-C., & Tsai, C.-C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational research review, 10, 90-115.
    Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive science, 4(4), 317-345.
    Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in cognitive sciences, 4(1), 6-14.
    Newell, A. (1972). Human problem solving. Upper Saddle River/Prentive Hall.
    OECD. (2015). Future of Education and Skills 2030. https://www.oecd.org/en/about/projects/future-of-education-and-skills-2030.html
    OECD. (2017). PISA 2015 Assessment and Analytical Framework. https://doi.org/doi:https://doi.org/10.1787/9789264281820-en
    OECD. (2023). PISA 2025 Science Framework (Draft). https://pisa-framework.oecd.org/science-2025/assets/docs/PISA_2025_Science_Framework.pdf
    Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.
    Roggema‐van Heusden, M. (2004). The challenge of developing a competence‐oriented curriculum: an integrative framework. Library Review, 53(2), 98-103. https://doi.org/10.1108/00242530410522587
    Timmis, S., Broadfoot, P., Sutherland, R., & Oldfield, A. (2016). Rethinking assessment in a digital age: Opportunities, challenges and risks. British Educational Research Journal, 42(3), 454-476.
    Tsai, M.-J., Hou, H.-T., Lai, M.-L., Liu, W.-Y., & Yang, F.-Y. (2012). Visual attention for solving multiple-choice science problem: An eye-tracking analysis. Computers & Education, 58(1), 375-385.
    UN. (2015). General Assembly A/RES/70/1. Transforming Our World, the 2030 Agenda for Sustainable Development. https://documents.un.org/doc/undoc/gen/n15/291/89/pdf/n1529189.pdf
    Wang, C.-Y., Tsai, M.-J., & Tsai, C.-C. (2020). Predicting cognitive structures and information processing modes by eye-tracking when reading controversial reports about socio-scientific issues. Computers in Human Behavior, 112, 106471.
    余民寧. (2022). 教育測驗與評量: 成就測驗與教學評量 (Vol. 81046). 心理.
    吳鐵雄. (1983). 電腦輔助教學之補救教學效果初探. 教育心理學報(16), 61-69.
    國家教育研究院. (2014). 十二年國民基本教育課程綱要總綱. https://www.naer.edu.tw/upload/1/16/doc/288/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%95%99%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E7%B8%BD%E7%B6%B1.pdf
    國家教育研究院. (2018). 十二年國民基本教育課程綱要自然科學領域. https://ghresource.k12ea.gov.tw/uploads/1613715832381Ld8uk4KU.pdf
    國家研究中心, 國. P. (2023). PISA 2025 科學評量架構. https://cirn.moe.edu.tw/Upload/file/42286/122164.pdf
    王智弘. (2019). 素養導向師資培育與課綱轉化─ 教育 2030 的觀點. 臺灣教育評論月刊, 8(12), 32-37.
    蔡清田. (2014). 國民核心素養: 十二年國教課程改革的. DNA. 臺北市: 高等教育, 87.
    蔡興國, 陳錦章, & 張惠博. (2010). 高中學生解題歷程之力圖表徵與列式關係之研究 [A Study of the Relationship between High School Students' Force Diagrams and Equation Representations in Problem Solving]. 科學教育學刊, 18(2), 155-175. https://doi.org/10.6173/cjse.2010.1802.04
    許翠珍. (2009). 高中學生物理解題歷程之分析研究 國立彰化師範大學].
    郭育廷. (2020). 利用眼動追蹤技術分析學生物理標準化試題之解題歷程. 臺灣師範大學科學教育研究所學位論文, 2020, 1-81.
    陳學志, 賴惠德, & 邱發忠. (2010). 眼球追蹤技術在學習與教育上的應用. 教育科學研究期刊, 55(4), 39-68.
    陳新轉. (2004). 九年一貫社會學習領域課程發展: 從課程綱要與能力指標出發. 心理出版社股份有限公司.

    下載圖示
    QR CODE