研究生: |
吳荻文 Wu, Ti-Wen |
---|---|
論文名稱: |
圓錐上的軌跡函數的凸性 THE CONVEXITY OF CIRCULAR CONE TRACE FUNCTIONS |
指導教授: |
張毓麟
Chang, Yu-Lin |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 14 |
中文關鍵詞: | Circular cone 、Trace 、Convexity 、Monotone 、Schur |
論文種類: | 學術論文 |
相關次數: | 點閱:203 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在Using Schur Complement Theorem to prove convexity of some SOC-functions這篇論文中,證明了在二階錐(Second order cone)上由凸函數(Convex function)所生成的軌跡函數(Trace function)亦為凸函數,我們試著將這個結果擴展到所有圓錐(Circular cone)上。但是,根據圓錐角度的不同,一個凸函數所生成的軌跡函數不一定會是凸函數。在本篇論文中找出一組充份條件,使凸函數所生成的軌跡函數會是凸函數。同時也給出幾個不滿足條件下軌跡函數不是凸函數的情況。這組條件是:圓錐角度大於45○且函數同時是遞增函數,或圓錐角度小於45○且函數同時是遞減函數。
Uusing the Schur complement theorem[1][2] to nd the sucient conditions which make the
Hessian of circular cone trace function positive semi-denite or positive denite, and proved that these
monotone conditions can make the trace function convex or strictly convex. After that, some examples
are given to explain why we have to satisfy these monotone conditions.
[1] Chrle R.johnson Roger A.Horn. Matrix Analysis. Cambridge, 1985.
[2] T-K Liao J-S Chen and S-H Pan. Using schur complement theorem to prove convexity of some
soc-functions. Journal of Nonlinear and Convex Analysis, vol. 13, no. 3, pp. 421-431, 2012.
[3] C-Y Yang Y-L Chang and J-S Chen. Smooth and nonsmooth analyses of vector-valued functions
associated with circular cones. Nonlinear Analysis: Theory, Methods and Applications, vol. 85, July,
pp. 160-173, 2013.
[4] J-S Chen J-C Zhou and H-F Hung. Circular cone convexity and some inequalities associated with
circular cones. Journal of Inequalities and Applications, vol. 2013, Article ID 571, 17 pages, 2013.
[5] J-C Zhou and J-S Chen. Properties of circular cone and spectral factorization associated with circular
cone. Journal of Nonlinear and Convex Analysis, vol. 14, no. 4, pp. 807-816, 2013.
[6] Y-L Chang C-Y Yang and J-S Chen. Analysis of nonsmooth vector-valued functions associated with
innite-dimensional second-order cones. Nonlinear Analysis: Theory, Methods and Applications, vol.
74, no. 16, pp. 5766-5783, 2011.