簡易檢索 / 詳目顯示

研究生: 林冠廷
KENJI GUAN-TING LIN
論文名稱: 臺灣六年級生在數學智性心態特點之探討
An Exploration of Characteristics of Taiwanese 6th Graders Students' Mathematical Mindset
指導教授: 楊凱琳
Yang, Kai-Lin
口試委員: 鄭英豪
Cheng, Ying-Hao
王婷瑩
Wang, Ting-Ying
楊凱琳
Yang, Kai-Lin
口試日期: 2023/01/15
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 133
中文關鍵詞: 智性心態數學智性心態成長心態潛在剖面分析主題分析
英文關鍵詞: Mindset, Mathematical Mindset, Growth Mindset, Latent Profile Analysis, Thematic Analysis
研究方法: 主題分析
DOI URL: http://doi.org/10.6345/NTNU202300780
論文種類: 學術論文
相關次數: 點閱:135下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在調查臺灣六年級生在數學學習中的智性心態(Mindset)特點,探討教師行為對於學生在數學智性心態(Mathematical Mindset)發展上的影響以及對數 學學習成敗及教師行為的歸因為何。研究對象為臺灣各地的國小六年級生,來自臺 北市、新北市、臺中市、彰化縣、臺南市、花蓮縣及屏東縣共 444 位學生。

    本研究以「一般與數學的聰明觀及努力調查問項」問卷進行臺灣六年級生的「一 般智性心態」、「數學智性心態」調查,內容包含「一般思維」、「數學思維」、 「數學學習成敗歸因」及「對有無幫助的教學行為之看法」四個部分進行研究。研 究發現:(1)成長智性心態越高的學生在一般及數學的領域中抱持更高的成長智性 心態,且一般智性心態顯著高於數學心智心態;(2)臺灣六年級生在智性心態共可 分為三群,命名為「成長智性心態較低組」、「成長智性心態平均組」及「成長智 性心態較高組」,此三群學生在在「一般智性心態-成長」、「一般智性心態-固定」、 「數學智性心態-成長」及「數學智性心態-固定」四面向的平均分數數達顯著差異; (3)在數學學習成敗歸因中,「成長智性心態較低組」相比「成長智性心態平均組」 及「成長智性心態較高組」更歸因於天生的「能力」;「成長智性心態平均組」相 比「成長智性心態較低組」及「成長智性心態較高組」將「他人的幫助」做為自身 數學成功的歸因;「成長智性心態較高組」面對數學失敗時,相比「成長智性心態 較低組」及「成長智性心態平均組」更歸因於後天「努力」及「情緒」;(4)「成 長智性心態較低組」將「教師意願性」為教師行為有幫助的最大佔比;「成長智性 心態平均組」與「成長智性心態較低組」對於「教學負荷量」的教師行為佔比不分 上下,同時「成長智性心態較高組」相比該兩組學生,在「練習需求」及「教學深 度」佔比更大,換言之,教學現場中,不同成長智性心態類型的學生關注教師是否 覺察到該學生之間不同的學習需求。

    This study aims to investigate the characteristics of the Mindset of sixth graders in mathematics learning in Taiwan, and to explore the influence of teachers' behavior on the development of students' Mathematical Mindset and the impact on the success or failure of mathematics learning and teacher behavior. The subjects of the study were elementary school sixth graders from all over Taiwan, a total of 444 students from Taipei City, New Taipei City, Taichung City, Changhua County, Tainan City, Hualien County and Pingtung County.

    This research uses the questionnaire of "General and Mathematics Intelligence and Effort Survey Items" to investigate the "General Mindset" and "Mathematical Mindset" of sixth graders in Taiwan. The contents include "General Thinking", "Mathematical Thinking", " Self-Attribution for Mathematical Learning " and " Perceptions of Helpful and Unhelpful Teaching Behavior " are four parts of the research. The research found that: (1) Students with higher growth mindset have higher growth mindset in the general and mathematics fields, and the general mindset are significantly higher than the mathematical mentality; (2) the Taiwanese sixth grade students can be divided into three groups, which are named "low growth mindset group", "average growth mindset group" and "higher growth mindset group" for mindset. and they were significantly different in "General Growth Mindset", "General Fixed Mindset", "Mathematical Growth Mindset" and "Mathematical Fixed Mindset"; (3) In the attribution of success or failure in mathematics learning, " The lower growth mindset group was more attributable to innate "ability" than the "average growth mindset group" and the "higher growth mindset group"; the "average growth mindset group" was more group" and "higher growth mindset group" attribute "help from others" to their own mathematical success; and the "average growth mindset group" are more attributed to acquired "effort" and "emotion"; (4) "low growth mindset group" regards "teacher willingness" as the largest proportion of teachers' behaviors that are helpful; "intelligence The "average growth mindset group" and the "low growth mindset group" have the same proportion of teachers' behaviors in the "teaching load". And "teaching depth" accounted for a larger proportion. In other words, in the teaching scene, students with different mindset types pay attention to whether the teacher is aware of the different learning needs of the students.

    第壹章 緒論 1 第一節 研究背景與動機 1 (一)充滿挑戰的未來世界 1 (二)臺灣學生的數學困境 2 (三)智性心態培養學生對數學無所畏懼 4 第二節 研究目的與問題 6 (一)研究目的 6 (二)研究問題 7 第三節 名詞解釋 8 第貳章 文獻回顧及探討 11 第一節 智性心態理論的內涵 11 (一)一般智性心態內涵 11 (二)數學智性心態的內涵 12 第二節 智性心態理論的學習與教學研究 13 (一)一般智性心態的學習與教學研究 13 (二)數學智性心態的學習與教學研究 14 第三節 歸因理論 19 (一)歸因理論的內涵 19 (二)學生對於數學學習的歸因 21 (三)學生歸因與教師行為的關聯 22 第參章 研究方法 23 第一節 研究架構與研究流程 23 (一) 研究架構 23 (二) 研究流程 24 第二節 研究對象及樣本 25 (一) 第一階段 – 預試問卷調查階段 25 (二) 第二階段 – 正式問卷調查階段 25 第三節 研究工具發展 27 (一)一般智性心態與數學智性心態問卷 27 (二)學生智性心態問卷 30 (三)學生問卷 31 (四)預試問卷分析與結果 32 1. 極端組檢驗 33 2. 信度分析 33 3. 因素分析 33 4. 專家效度及表面效度 34 5. 綜合結果 35 第四節 資料分析處理與方法 43 (一)因素分析 43 1. 探索性因素分析法 43 2. 驗證性因素分析法 44 (二)重複量數單因子變異數分析(One Way ANOVA, Repeated Measures) 45 (三)潛在剖面分析(Latent Profile Analysis, LPA) 45 (四)單因子變異數分析(One-Way ANOVA) 46 1. 編碼架構的建立 46 (1)學生對「數學學習成敗歸因」編碼表 46 (2)學生對數學學習過中「對有無幫助的教學行為之看法」編碼表 49 2. 編碼的信度方式與檢測 52 (1)「方法」的三角校正法 52 (2)「資料來源」的三角校正法 53 (3)「分析者」的三角校正法 53 第肆章 研究結果與討論 56 第一節 六年級學生在智性心態的因素結構 56 (一)探索性因素分析 56 (二)驗證性因素分析 60 1.模型適配度 60 2.合成信度(Composite Reliability, CR) 62 3.收斂效度(Convergent Validity) 62 4.區別效度(Discriminant Validity) 63 5.重複量數單因子變異數分析(one-way ANOVA, Repeated Measures) 66 第二節 六年級生學生在「一般智性心態」與「數學智性心態」之現況分類 67 (一)潛在剖面分析 67 (二)綜合結果 69 第三節 不同成長智性心態類型學生的數學學習成敗歸因 73 (一) 智性心態歸因編碼類型分佈摘要 74 1. 內在因素 74 2. 外在因素 75 (二)「成長智性心態較低組」在「數學學習成敗歸因」的編碼情形 77 1. 「成長智性心態較低組」在「數學學好」 77 2. 「成長智性心態較低組」在「數學學不好」 77 (三)「成長智性心態平均組」在「數學學習成敗歸因」的編碼情形 78 1. 「成長智性心態平均組」在「數學學好」 78 2. 「成長智性心態平均組」在「數學學不好」 78 (四)「成長智性心態較高組」在「數學學習成敗歸因」的編碼情形 79 1. 「成長智性心態較高組」在「數學學好」 79 2. 「成長智性心態較高組」在「數學學不好」 79 (五)綜合結果 83 第四節 不同成長智性心態類型學生對有無幫助的教學行為之看法 85 (一)不同成長智性心態類型對教師行為的分佈 86 (二)「成長智性心態較低組」在「對有無幫助的教學行為之看法」的編碼情形 90 1. 「成長智性心態較低組」在「教師行為有幫助」 90 2. 「成長智性心態較低組」在「教師行為沒有幫助」 91 (三)「成長智性心態平均組」在「對有無幫助的教學行為之看法」編碼情形 92 1. 「成長智性心態平均組」在「教師行為有幫助」 92 2. 「成長智性心態平均組」在「教師行為沒有幫助」 93 (四)「成長智性心態較高組」在「對有無幫助的教學行為之看法」編碼情形94 1. 「成長智性心態較高組」在「教師行為有幫助」 94 2. 「成長智性心態較高組」在「教師行為沒有幫助」 95 (五)綜合結果 97 第伍章 結論與建議 106 第一節 研究結論 106 (一)「一般智性心態」及「數學智性心態」的因素結構 106 (二)本研究樣本對象可分類為 3 群 107 (三)不同成長智性心態類型的學生對數學學習成敗的不同及特點 109 (四)不同成長智性心態類型的學生對教師行為有幫助及沒幫助特點 111 第二節 未來數學教育現場 113 (一)「教師意願性」為第一要務 113 (二)「對學生的需求覺察」,調整「教學負荷量」及「練習需求」113 第三節 本研究的限制及建議 114 (一)研究對象限制 114 (二)研究建議 114 參考文獻 115 一、中文文獻 115 二、外文文獻 116 附件: 附件一、一般與數學的聰明觀及努力調查問項量表暨問卷知情說明頁 130

    施佩婷. (2021)。智性心態導向班級經營之行動研究——以國小二年級為例〔未出版之碩士論文〕。國立臺灣師範大學,臺北市。
    李佩芬(2011)。互動式數學繪本教學實施及其對國小學童學習成效影響之研究。臺北市立教育大學課程與教學研究所課程與教學碩士學位在職進修專班碩士論文,臺北市。 取自https://hdl.handle.net/11296/kvpf86
    賴清標. (1993). 魏納的歸因理論及其教育含意. 初等教育研究集刊, (1),77-89.
    佘曉清, & 林煥祥. (2019). PISA 2015 臺灣學生的表現. 國立交通大學出版社.
    林煥祥, 劉聖忠, 林素微, & 李暉. (2008). 臺灣參加 PISA 2006 成果報告. 行政院國家科學委員會計畫成果報告 (報告編號: NSC 95-2522-S-026-002), 未出版.
    劉玉玲, & 沈淑芬. (2015). 數學自我概念, 數學學習策略, 數學學業情緒與數學學業成就之研究-自我提升模式觀點. 教育心理學報, 46(4), 491-516.
    林碧珍(2019b)。TIMSS 2015 臺灣國小四年級學生數學成就及其相關因素之探討(2)。科學教育月刊,417,2-17。doi:10.6216/sem.201904_(417).0001
    吳佳樺、楊旻婕(2017)培育學生智性心態之教學策略。臺灣教育評鑑月刊,6(6),163-166
    郭生玉(1983)國小學童成敗歸因與學業成就、成就動機及成敗預期心理之研究。教育心理學報,17,51-72。
    郭生玉(1995)國中學生成敗歸因型態與學業冒險取向、學習失敗忍受力相關之研究。教育心理學報,28,59-76。
    吳佳樺(2017)。提升國小六年級學生創造力智性心態與創造力表現之行動研究(未出版之碩士論文)。國立臺北教育大學教育學系。
    張偉豪(2011)。論文寫作-SEM不求人。臺北:鼎茂。
    張偉豪、鄭時宜(2012)。與結構方程模型共舞:曙光初現。新北市:前程文化。
    中華民國教育部(2014)。十二年國民基本教育課程綱要。取自:
    https://www.naer.edu.tw/upload/1/16/doc/288/十二年國教課程綱要總綱.pdf
    中華民國教育部(2020)。國際教育白皮書2.0。
    Beilock, S. (2011). Choke: What the secrets of the brain reveal about getting it right when you have to. New York: Free Press.
    Blackwell, L., Trzesniewski, K., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246–263.
    Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education, 29(1), 41–62.
    Boaler, J. (2013b). Ability grouping in mathematics classrooms. In S. Lerman (Ed.), International encyclopedia of mathematics education: New York: Springer.
    Boaler, J. (2016). Mistakes grow your brain. Youcubed at Stanford University Graduate School of Education. Accessed April, 14, 2016.
    Boaler, J. (2002a). Experiencing school mathematics: Traditional and reform approaches to teaching and their impact on student learning (revised, expanded edition). Mahwah, NJ: Erlbaum.
    Boaler, J. (2002b). Paying the price for“sugar and spice”: Shifting the analytical lens in equity research. Mathematical Thinking and Learning, 4(2&3), 127–144.
    Boaler, J. (2022). Mathematical mindsets: Unleashing students' potential through creative mathematics, inspiring messages and innovative teaching.
    John Wiley & Sons.Bostwick, K. C., & Becker-Blease, K. A. (2018). Quick, easy mindset intervention can boost academic achievement in large introductory psychology classes. Psychology Learning & Teaching, 17(2), 177-193.
    Bollen, K. A. (1989). Structure equations with latent variables. New York: John Wiley.
    Broda, M., Yun, J., Schneider, B., Yeager, D. S., Walton, G. M., & Diemer, M. (2018). Reducing inequality in academic success for incoming college students: A randomized trial of growth mindset and belonging interventions. Journal of Research on Educational Effectiveness, 11(3), 317-338
    Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp.136-162). Newbury Park, CA: Sage.
    Boyd, P., & Ash, A. (2018). Mastery mathematics: Changing teacher beliefs around in-class grouping and mindset. Teaching and Teacher Education, 75, 214-223.
    Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative research in sport, exercise and health, 11(4), 589-597.
    Breivik, E., & Olsson, U. H. (2001). Adding variables to improve fit: the effect of model size on fit assessment in LISREL. In R. Cudeck, du Toit Stephen, & D. Sörbom (Eds), Structural equation modeling: Present and future. A festschrift in honor of Karl Jöreskog (pp.169-194). IL: SSI.
    Buehl, M., & Alexander, P. (2002). Beliefs about schooled knowledge: Domain specific or domain general? Contempory Education Psychology, 27(3), 415–449. https://doi.org/10.1006/ceps.2001.1103.
    Byrne, H. M. (2010). Dissecting cancer through mathematics: from the cell to the animal model. Nature Reviews Cancer, 10(3), 221-230.
    Clarke, V., & Braun, V. (2013). Teaching thematic analysis: Overcoming challenges and developing strategies for effective learning. The psychologist, 26(2).
    Claro, S., Paunesku, D., & Dweck, C. S. (2016). Growth mindset tempers the effects of poverty on academic achievement. Proceedings of the National Academy of Sciences, 113(31), 8664-8668.
    Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1), 37-46.
    Clifford, J. (1989). Notes on travel and theory. Inscriptions, 5(5.29), 11.
    Cury, F., Elliot, A. J., Da Fonseca, D., & Moller, A. C. (2006). The social-cognitive model of achievement motivation and the 2× 2 achievement goal framework. Journal of personality and social psychology, 90(4), 666.
    Deevers, M. (2006). Linking classroom assessment practices with student motivation in mathematics. Paper presented at the American Educational Research Association, San Francisco.
    Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A Confirmatory Factor Analysis of the End-User Computing Satisfaction Instrument. MIS Quarterly, 12(2), 259-274.
    Duckworth, E. (1991). Twenty-four, forty-two and I love you: Keeping it complex. Harvard Educational Review, 61(1), 1–24.
    Dweck, C. S., Chiu, C. Y., & Hong, Y. Y. (1995). Implicit theories and their role in judgments and reactions: A word from two perspectives.Psychological inquiry, 6(4), 267-285.
    Dweck, C. S., & Sorich, L. (1999). Mastery-oriented thinking. Coping, 11, 232-251.
    Dweck, C. S. (1999). Caution--Praise Can Be Dangerous. American Educator, 23(1), 4-9.
    Dweck, C. S., & Ehrlinger, J. (2006). Implicit theories and conflict resolution. The handbook of conflict resolution: Theory and practice, 2, 317-330.
    Dweck, C. S. (2006a). Is math a gift? Beliefs that put females at risk. In W.W.S.J. Ceci (Ed.), Why aren't more women in science? Top researchers debate the evidence. Washington, DC: American Psychological Association.
    Dweck, C. S. (2006b). Mindset: The new psychology of success. New York: Ballantine Books.
    Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
    Flores, A. (2007). Examining disparities in mathematics education: Achievement gap or opportunity gap?. The High School Journal, 91(1), 29-42.
    Frost, S. (1993). Strategies to Help Freshmen Succeed. Planning for higher education, 21(4), 21-26.
    Gouëdard, P. (2021). Can a growth mindset help disadvantaged students close the gap?.
    Graham, M. A. (1983). Acculturative stress among Polynesian, Asian and American students on the Brigham Young University—Hawaii campus. International Journal of Intercultural Relations, 7(1), 79-103.
    Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2013). Teachers' spatial anxiety relates to 1st‐and 2nd‐graders' spatial learning. Mind, Brain, and Education, 7(3), 196-199.
    Haimovitz, K., & Dweck, C. S. (2016). What predicts children’s fixed and growth intelligence mind-sets? Not their parents’views of intelligence but their parents’views of failure. Psychological science, 27(6), 859-869.
    Hair, J. 1998. Multivariate Data Analysis, 5th edn, Englewood Cliffs, N.J: Prentice-Hall.
    HOLSTI, O.R. Content Analysis for the Social Sciencesand Humanities. Addison-Wesley, Reading, Massachusetts, 1969.
    Horn, I. S. (2005). Learning on the job: A situated account of teacher learning in high school mathematics departments. Cognition and Instruction, 23(2) 207–236.
    Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struc- tural Equation Modeling, 6, 1–55.
    Jonsson, B., Norqvist, M., Liljekvist, Y., & Lithner, J. (2014). Learning mathematics through algorithmic and creative reasoning. The Journal of Mathematical Behavior, 36, 20-32
    Kiarsi, S., & Ebrahimi, S. F. (2021). Students' Lived Experience Of Factors Affecting Difficulties In Learning Mathematics: A Phenomenological Study. Elementary Education Online, 20(6), 1047-1047.
    Leroy, N., Bressoux, P., Sarrazin, P., & Trouilloud, D. (2007). Impact of teachers’implicit theories and perceived pressures on the establishment of an autonomy supportive climate. European journal of psychology of education, 22(4), 529-545.
    Lou, N. M., & Noels, K. A. (2019). Promoting growth in foreign and second language education: A research agenda for mindsets in language learning and teaching. System, 86, 102126.
    Lottero-Perdue, P.S. & Lachapelle, C. P. (2019). Instruments to measure elementary student mindsets about smartness and failure in general and with respect to engineering. International Journal of Education in Mathematics, Science and Technology (IJEMST), 7(2), 197-214. DOI:10.18404/ijemst.552468
    Matheson, I. A. (2015). Self-regulatory efficacy and mindset of at-risk students: An exploratory study. Exceptionality Education International, 25(1).
    MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32, 193-210.
    Mesler, R. M., Corbin, C. M., & Martin, B. H. (2021). Teacher mindset is associated with development of students' growth mindset. Journal of applied developmental psychology, 76, 101299.
    Murphy, P. K., & Alexander, P. A. (2002). What counts? The predictive powers of subject-matter knowledge, strategic processing, and interest in domain-specific performance. The Journal of Experimental Education, 70(3), 197-214.
    Mullis, I. V., & Martin, M. O. (2017). TIMSS 2019 Assessment Frameworks. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands.
    Murphy, M. C., Garcia, J. G., & Zirkel, S. (2014). Women, STEM, and the impact of professors’ theories of intelligence on performance and persistence over time [Unpublished data]. Indiana University, Bloomington.
    Mueller, C. M., & Dweck, C. S. (1998). Praise for intelligence can undermine children's motivation and performance. Journal of personality and social psychology, 75(1), 33.
    Muller, C., and C. Dweck. (1998) “Praise for Intelligence Can Undermine Children’s Motivation and Performance.” Journal of Personality and Social Psychology 75: 33–52.
    Müllensiefen, D., Harrison, P., Caprini, F., & Fancourt, A. (2015). Investigating the importance of self-theories of intelligence and musicality for students' academic and musical achievement. Frontiers in psychology, 6, 1702.
    OECD (2019). PISA 2018 Assessment and Analytical Framework. Paris, France: OECD publishing. doi: 10.1787/b25efab8-en
    OECD (2020). PISA 2018 technical report. Paris, France: OECD publishing.Retrieved:https://www.oecd.org/pisa/data/pisa2018technicalreport/
    Park, D., Tsukayama, E., Yu, A., & Duckworth, A. L. (2020). The development of grit and growth mindset during adolescence. Journal of Experimental Child Psychology, 198, 104889.
    Paunesku, D., Walton, G. M., Romero, C., Smith, E. N., Yeager, D. S., & Dweck, C. S. (2015). Mind-set interventions are a scalable treatment for academic underachievement. Psychological science, 26(6), 784-793.
    Piaget, J. (1962). The relation of affectivity to intelligence in the mental development of the child. Bulletin of the Menninger clinic, 26(3), 129.
    Pimm, D. (2019). Routledge Revivals: Speaking Mathematically (1987): Communication in Mathematics Clasrooms. Routledge.
    Rattan, A., Good, C., & Dweck, C. S. (2012). “It's ok—Not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students. Journal of experimental social psychology, 48(3), 731-737.
    Ricci, F., & Zachariadis, M. (2013). Education externalities on longevity. Economica, 80(319), 404-440.
    Rissanen, I., Kuusisto, E., Tuominen, M., & Tirri, K. (2019). In search of a growth mindset pedagogy: A case study of one teacher's classroom practices in a Finnish elementary school. Teaching and teacher education, 77, 204-213.
    Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27(4), 587-597.
    Ronkainen, R., Kuusisto, E., & Tirri, K. (2019). Growth mindset in teaching: A case study of a Finnish elementary school teacher. International Journal of Learning, Teaching and Educational Research.
    Ryan, S., & Mercer, S. (2012). Implicit theories: Language learning mindsets. In Psychology for language learning (pp. 74-89). Palgrave Macmillan, London.
    Schoenfeld, A. H., & Sloane, A. H. (2016). Mathematical thinking and problem solving. Routledge.
    Setiawan, E. P., Pierewan, A. C., & Montesinos-López, O. A. (2021). Growth Mindset, School Context, and Mathematics Achievement in Indonesia: A Multilevel Model. Journal on Mathematics Education, 12(2), 279-294.
    Shim, M., Hwang, H. J., Kim, D. W., Lee, S. H., & Im, C. H. (2016). Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophrenia research, 176(2-3), 314-319.
    Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28.
    Silver, E. A., & Stein, M. K. (1996). The QUASAR project: The" revolution of the possible" in mathematics instructional reform in urban middle schools. Urban Education, 30(4), 476-521.
    Sinay, E., & Nahornick, A. (2016). Teaching and learning mathematics research series I: Effective instructional strategies. Canada: Toronto District School Board.
    Stipek, D., & Gralinski, J. H. (1996). Children's beliefs about intelligence and school performance. Journal of Educational Psychology, 88(3), 397.
    Stohlmann, M. (2018). A vision for future work to focus on the “M” in integrated STEM. School Science and Mathematics, 118(7), 310-319.
    Sun, K. L. (2018). Brief report: The role of mathematics teaching in fostering student growth mindset. Journal for Research in Mathematics Education, 49(3), 330-335.
    Sun, X., Nancekivell, S., Gelman, S. A., & Shah, P. (2021). Growth mindset and academic outcomes: a comparison of US and Chinese students. npj Science of Learning, 6(1), 1-9.
    Tomasetto, C., Alparone, F. R., & Cadinu, M. (2011). Girls' math performance under stereotype threat: the moderating role of mothers' gender stereotypes. Developmental psychology, 47(4), 943.
    Trouilloud, D., Sarrazin, P., Bressoux, P., & Bois, J. (2006). Relation between teachers' early expectations and students' later perceived competence in physical education classes: Autonomy-supportive climate as a moderator. Journal of educational psychology, 98(1), 75.
    Ullman, J. B. (2001). Structural equation modeling. In B. G. Tabachnick and L.S. Fidell (2001), Using Multivariate Statistics (4th ed.): 653-771. Needham Heights, MA: Allyn and Bacon.
    Vermote, B., Aelterman, N., Beyers, W., Aper, L., Buysschaert, F., & Vansteenkiste, M. (2020). The role of teachers’ motivation and mindsets in predicting a (de) motivating teaching style in higher education: A circumplex approach. Motivation and emotion, 44(2), 270-294.
    Warren, F., Mason‐Apps, E., Hoskins, S., Devonshire, V., & Chanvin, M. (2019). The relationship between implicit theories of intelligence, attainment and socio‐demographic factors in a UK sample of primary school children. British Educational Research Journal, 45(4), 736-754.
    Weiner, B. (1980). May I borrow your class notes? An attributional analysis of judgments of help giving in an achievement-related context. Journal of Educational Psychology, 72(5), 676.
    Weiner, B., Graham, S., Taylor, S. E., & Meyer, W. U. (1983). Social cognition in the classroom. Educational Psychologist, 18(2), 109-124.
    Weiner, G. (1985). Just a bunch of girls: Feminist approaches to schooling.
    Weiner, G. (1986). Feminist education and equal opportunities: unity or discord?. British Journal of Sociology of Education, 7(3), 265-274.
    Weiner, E., & Weiner, J. (1996). Concerns and Needs of University Students with Psychiatric Disabilities. Journal of Postsecondary Education and Disability, 12(1), 2-9.
    Wonch Hill, P., McQuillan, J., Talbert, E., Spiegel, A., Gauthier, G. R., & Diamond, J. (2017). Science possible selves and the desire to be a scientist: Mindsets, gender bias, and confidence during early adolescence. Social Sciences, 6(2), 55.
    Yeager, D. S., & Dweck, C. S. (2012). Mindsets that promote resilience: When students believe that personal characteristics can be developed. Educational psychologist, 47(4), 302-314.
    Yeager, D. S., Hanselman, P., Walton, G. M., Murray, J. S., Crosnoe, R., Muller, C., ... & Dweck, C. S. (2019). A national experiment reveals where a growth mindset improves achievement. Nature, 573(7774), 364-369
    Yeager, D. S., Romero, C., Paunesku, D., Hulleman, C. S., Schneider, B., Hinojosa, C., ... & Dweck, C. S. (2016). Using design thinking to improve psychological interventions: The case of the growth mindset during the transition to high school. Journal of educational psychology, 108(3), 374.
    Youcubed at Stanford University. (2018) https://www.youcubed.org
    Yuksel, D., Soruç, A., Altay, M., & Curle, S. (2021). A longitudinal study at an English medium instruction university in Turkey: the interplay between English language improvement and academic success. Applied Linguistics Review
    Zhang, J., Kuusisto, E., Nokelainen, P., & Tirri, K. (2020). Peer feedback reflects the mindset and academic motivation of learners. Frontiers in psychology, 11, 1701.
    Zirkel, S., Garcia, J. A., & Murphy, M. C. (2015). Experience-sampling research methods and their potential for education research. Educational researcher, 44(1), 7-16

    下載圖示
    QR CODE