研究生: |
林益儒 Yi-Ju Lin |
---|---|
論文名稱: |
類Hindmarsh-Rose模型之分岔與動態行為的研究 Bifurcations and Dynamical Behaviors for a Hindmarsh Rose Type model |
指導教授: |
陳賢修
Chen, Shyan-Shiou |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 類Hindmarsh-Rose模型 、saddle-node分岔 、Andronov-Hopf分岔 、動態系統 |
英文關鍵詞: | Hindmarsh-Rose type model, saddle-node bifurcation, Andronov-Hopf bifurcation, dynamical systems |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要的目的是探討Hindmarsh-Rose Type model的分岔研究。該模型是Hodgkin-Huxley(HH)的神經元模型的簡化型。為了簡化HH模型並保留神經元活動的基本特性,FitzHugh-Nagumo以及Hindmarsh–Rose(HR)等人將該模型簡化成多項式的形態,以利於研究單一神經元的活動。我們主要的工作是透過研究HR模型的saddle-node (SN) bifurcation及Andronov-Hopf (AH) bifurcation以了解類型一神經元及類型二神經元的活性化。我們主要的結果是確定SN及AH發生的條件。本研究成果有助於了解單一神經元動態行為及其基本特性。
In the paper, we aim to study some bifurcations and dynamical behaviors of a two dimensional Hindmarsh-Rose type (HRT) model, which is a simplified version of Hodgkin-Huxley neuron mode. Hodgkin suggested that there exist two classes of neurons: one is Class 1 and the other is Class 2. In dynamical systems, these two classes also called Type 1 and Type 2, respectively. We mathematically confirm the occurrences of both saddle-node and Andronov-Hopf bifurcations of the HRT model. Physiologically, the first bifurcation is concerned with Class 1 excitability and spiking, and the second bifurcation is related to Class 2 excitability and spiking. Therefore, the research could help us to understand the dynamical behaviors of a single neuron and its basic characteristics.
[1] E. M. Izhikevich. Neural excitablity, spiking and bursting. Int. J. Bifurcation and
Chaos, 10:1171–1266, 2000.
[2] V. B. Mountcastle. Modality and topographic properties of single neurons of cat’s
somatic sensory cortex. J Neurophysiol, 20:408–434, 1957.
[3] V. B. Mountcastle. The columnar organization of the neocortex. Brain, 120:701–
722, 1997.
[4] A.L. Hodgkin. The local electric change associated withrepetitive action in a
non-medullated axon. J.Physiol, 107:165–181, 1948.
[5] A.L. Hodgkin and A.F. Huxley. A qualitative description of membrane current
and its application to conduction and excitation in nerve. J.Physiol, 117:500–544,
1952.
[6] R. FitzHugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J., 1:445–466, 1961.
[7] J. S. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line
simulating nerve axon. Proc. IRE, 50:2061–2071, 1962.
[8] Hindmarsh J.L. and Rose R.M. A model of the nerve impulse using two first-order
differential equations. Nature, 296:162–164, 1982.
[9] S. Tsuji, T. Ueta, H. Kawakami, H. Fujii, and K. Aihara. Bifurcation in two-
dimensional hindmarsh-rose type model. I.J.B.C, 17(3):985–998, 2007.
[10] R.C. Robinson. An introduction to dynamical systems:Continuous and discrete.
Pearson, 2004.
[11] F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural networks.
Springer, 1997.
[12] S. Wiggins.
Introduction to applied nonlinear dynamical systems and chaos.
Springer, 1990.
[13] Guckenheimer J. and Holmes P. Nonlinear oscillations dynamical systems, and
bifurcations of vector fields. Springer, 1983.