簡易檢索 / 詳目顯示

研究生: 廖淳格
Tsun-Ko Liao
論文名稱: 二疊錐與半正定錐相似程度之比較
To what extent are second-order cone and positive semidefinite cone alike?
指導教授: 陳界山
Chen, Jein-Shan
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 28
中文關鍵詞: 二疊錐凸函數單調函數半正定錐分解定理
英文關鍵詞: second-order cone, convex function, monotone function, positive semidefinite matrix, spectral decomposition
論文種類: 學術論文
相關次數: 點閱:269下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二疊錐與半正定錐都是對稱錐的一種特例,它們分別在二疊錐規劃與半正定錐規劃方面扮演了重要的角色。目前已知透過二疊錐與半正定錐之間的某些關係,可以將二疊錐規劃問題可以轉化成半正定錐規劃問題,但關於它們之間的一些分析技巧還是有許多不同。例如矩陣的乘積是具有結合律的,但二疊錐的Jordan乘積卻沒有。在這篇論文中,我們試著去找出、比較一些二疊錐與半正定錐之間相同或相異的地方,希望能為以後的研究提供一些想法。

    The cone of positive semidefinite matrices and second-order cone are both self-dual and special cases of symmetric cones. Each of them play an important role in semidefinite programming (SDP) and second-order cone programming (SOCP), respectively. It is known that an SOCP problem can be viewed as an SDP problem via certain relation between positive semidefinite cone and second-order cone. Nonetheless, most analysis used for dealing SDP can not carried over to SOCP due to some difference, for instance, the matrix multiplication is associative for positive semidefinite cone whereas the Jordan product is not for second-order cone. In this paper, we try to have a thorough study on the similarity and difference between these two cones which provide theoretical for further investigation of SDP and SOCP.

    1.Introduction.........................................1 2.Preliminary..........................................4 3.The convexity of function associated with SOC........6 4.Equalities and Inequalities associated with SOC.....21 5.Final Remarks.......................................26 6.Refences............................................27

    [1] A. Auslender, Variational inequalities over the cone of semidefinete positive sym- metric matrices and over the lorentz cone, Optimization Methods and Software, vol.
    18, pp. 359-376, 2003.

    [2] A. Auslender, Penalty and barrier methods: a unified framework, SIAM Journal on Optimization, vol. 10, pp.211-230, 1999.

    [3] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming, John Wiley and Sons, 3rd edition, 2006.

    [4] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.

    [5] J.-S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued func- tions associated with second-oredr cone, Mathmatical Programming, vol.101, pp. 95-
    117, 2004.

    [6] J.-S. Chen and P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Mathematical Programming, vol.
    104, pp. 293-327, 2005.

    [7] J.-S. Chen, The convex and monotone functions associated with second-order cone, Optimization, vol. 55, pp. 363-385, 2006.

    [8] A. Fischer A special Newton-type optimization methods, Optimization, vol. 24, pp.
    269-284, 1992.

    [9] A. Fischer Solution of the monotone complementarity problem with locally Lips- chitzian functions, Mathematical Programming, vol. 76, pp.513-532, 1997.

    [10] J. Faraut and A. Kora´nyi, Analysis on symmetric Cones, Oxford Mathematical
    Monographs, Oxford University Press, New York, 1994.

    [11] M. Fukushima, Z.-Q Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM Journal on Optimazation, vol. 12, pp. 436-460,
    2002.

    [12] M.-L. Hsu, Some results on functions associated with second-order cone, Master thesis, National Taiwan Normal University, 2007.
    [13] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985. [14] C. Kanzow and M. Fukushima, Equivalence of the generalized complementarity
    problem to differentiable unconstrained minimization, Journal of Optimization Theory
    and Applications, vol. 90, pp. 581-603, 1996.

    [15] O. L. Mangasarian and M. V. Solodov, Nonlinear complementarity as un- constrained and constrained minimization, Mathematical Programming, vol. 62, pp.
    277-297, 1993.

    [16] S.-H. Pan and J.-S. Chen, A damped Gauss-Newton method for the second-order cone complementarity problem, Mathematics and Optimization, vol. 59, pp. 293-318,
    2009.

    [17] S.-H. Pan and J.-S. Chen, Growth behavior of two classes of merit functions for symmetric cone complementarity problems, Journal of Optimization Theory and Applications , vol. 141, pp. 167-191, 2009.

    [18] J. Schott, Matrix Analysis for Statistics, John Wiley and Sons, 2nd edition, 2005.

    [19] C-K. Sim and G. Zhao, A note on treating a second-order cone program as a
    special case of a semidefinite program, Mathematical Programming, vol. 102, pp.
    609-613, 2005.

    QR CODE