研究生: |
張世安 Shih-An Chang |
---|---|
論文名稱: |
台灣南部現生牡蠣殼體與水體之穩定同位素記錄及其應用 Stable isotope records of modern oyster shells and water from Southwest Taiwan and their implication |
指導教授: |
米泓生
Mii, Horng-Sheng 李匡悌 Li, Kuang-Ti |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 長牡蠣 、穩定同位素 、大道公遺址 、水文環境 |
英文關鍵詞: | Crassostrea gigas, stable isotope, Ta Tao Kung archaeological site, water environment |
DOI URL: | http://doi.org/10.6345/NTNU202001162 |
論文種類: | 學術論文 |
相關次數: | 點閱:218 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究自2017年10月至2019年8月間,採集養殖於台南市七股地區現生牡蠣以及其所生長的水體標本,共採集101個殼體及208個水體標本,分析其穩定同位素成分,以了解現生牡蠣殼體同位素組成與其生活水文環境間之關係。
本研究結果顯示養殖場水體氫同位數值主要介於-74.03‰ ~ 8.17‰間(平均值-2.59 ± 14.46‰,1σ;N=182;V-SMOW);氧同位數值主要介於-9.77‰ ~ 0.76‰之間(平均值-0.58 ± 1.90‰;V-SMOW),曾文溪近出海口水體氫同位數值主要介於-82.01‰ ~ -1.73‰間(平均值-19.27 ± 19.68‰,1σ;N=26;V-SMOW);氧同位數值主要介於-11.37‰ ~ -0.29‰之間(平均值-3.13 ± 2.90‰;V-SMOW)。養殖場與曾文溪近出海口水體氫、氧同位素有顯著的線性關係,與嘉南天水線之關係相似,可反映出淡水與海水混合環境的特性。養殖場水體氧同位素數值與雨量及鹽度數值亦呈現顯著負相關性,可反映出台灣西南部降水/蒸發之氣候特性。
現生牡蠣殼體記錄的氧同位素數值介於-6.72‰~ 0.92‰之間(平均值為-3.38 ± 0.96‰,N=1091;V-PDB),碳同位素數值介於-4.67‰~0.92‰之間(平均值為 -1.67 ± 0.68‰;V-PDB)。而牡蠣殼體氧同位素數值與海溫及水體氧同位素記錄分別呈現負及正相關性的振盪變化。將海溫與水體氧同位素數據代入氧同位素溫度方程式計算出殼體氧同位素理論平衡值,牡蠣殼體氧同位素數值隨著生長週期的曲線變化與理論平衡值曲線大致符合。在牡犡殼體生長時間的不確定因素下,殼體氧同位素實際數值與理論數值約有67%相符,其他不一致的原因可能為雨季及冬季停止生長之生機效應所影響,因此在春、秋兩季溫度推算較為精確。
本研究分析6個南科園區西拉雅文化之大道公遺址考古挖掘出土牡蠣,嘗試探討當時採集牡蠣的季節,及降雨強度與現今的差異。考古遺址牡蠣記錄的氧同位素數值介於-9.45‰~ -1.00‰之間(平均值-4.33 ± 1.50‰,N=86;1σ)。考古遺址殼體氧同位素記錄亦呈現如現生牡蠣殼體之季節性變化,春、夏、冬季皆有採收,考古遺址殼體與現今殼體比較,當時之夏季氧同位素較現今小1.08‰,冬季則小0.49‰。顯示600~500B.P.時期可能處於較現今溫暖及潮濕的氣候形態。
To study the relationship between isotope compositions of modern oyster shells and those of water in which they lived, 101 modern oyster shells and 208 water samples were collected from Chi Ku area monthly from October, 2017 to August, 2019.
The hydrogen isotope values of the aquafarm water samples are between -74.03‰ and 8.17‰ (-2.59 ± 14.46‰, 1σ; N = 182; V-SMOW), and the oxygen isotope values are between -9.77‰ and 0.76‰ (-0.58 ± 1.90‰; V-SMOW). The D and 18O values of Zengwen River are respectively between -82.01‰ and -1.73‰ (-19.27 ± 19.68‰, 1σ; N = 27) and between -11.37‰ and -0.29‰ (-3.13 ± 2.90‰). The significant linear relationship between oxygen and hydrogen isotopes values in these water samples shows the characteristics of mixing environment between freshwater and seawater. These water oxygen isotope values negatively and positively correlate with the amount of rainfall and the salinity observed, respectively. The relationfhip between D and 18O values observed is similar to that of the local meteoric water line of SW Taiwan published .
The oxygen isotope values of living oyster shells range from -6.72‰ to 0.92‰(
-3.38 ± 0.96‰, N = 1091; V-PDB) and the carbon isotope values range from -4.67‰ to 0.92‰ (-1.67 ± 0.68‰; V-PDB). Oxygen isotope fluctuation patterns of the oyster shells are similar to that of theoretical equilibrium pattern calculated using observed seawater temperature and water oxygen isotope values. With the uncertainty in the time correlation, the seasonal 18O values of shells are roughly 67% consistent with those of theoretical equilibrium values. Difference between the 18O values of oyster shells and those of equilibrium values might be caused by oyster stop growing during the time of higher precipitation events and lower winter temperature. Therefore, the temperature estimation is more accurate in the spring and autumn seasons.
This study analyzes six archaeological oyster shells excavated from Ta Tao Kung archaeological site in the Southern Taiwan Science Park. The oxygen isotope values of these archaeological oysters are ranging from -9.45‰ to -1.00‰ (-4.33 ± 1.50‰, N = 86). Based on the 18O records, these shells were collected in spring, summer and winter. The average oxygen isotope values of the archaeological shells are 1.08‰ and 0.49‰ less than those of modern shells in summer and winter, respectively. Based on the 18O records, the overall climate in 600 to 500 B.P. may be warmer and wetter than present.
丁雲源,1974,牡蠣養殖,行政院農委會水產試驗所水產技術手冊。
江芝華,2019,蘭陽平原新石器時代晚期人地關係的糾葛:以宜蘭縣丸山遺址為例,考古人類學刊,第91期,第43-84頁。
吳育勳,2008。牡蠣養殖發展之研究-以台南市牡蠣養殖區為例。國立中山大學海洋環境及工程學系碩士論文。共58頁。
呂香儒,2009,台灣西南地區現生牡蠣與考古遺址出土牡蠣殼體穩定同位素所反映之水文環境意義:國立臺灣師範大學地球科學研究所碩士論文,共101頁。
宋薰華,1988,台灣東部牡蠣養殖:豐年,第20期,第19頁。
巫文隆,1980,台灣重要實用雙殼貝類研究:貝類學報,第7期,第101-104頁。
李匡悌,2001,論龜山遺址出土穿孔人齒的意義:歷史語言研究所集刊,第72期,第699-722頁。
李匡悌,2005,論墾丁史前聚落遺址的貝類採集及其古代水體環境的意義:南島學報,第1期,第47-63頁。
李龍雄,1989。水產養殖學(下冊)牡蠣養殖。前程出版社。第165-188頁。
阮孟靈,2018,台灣南科考古遺址群出土長牡蠣貝殼穩定同位素所反映的全新世中晚期古環境:國立臺灣師範大學地球科學研究所碩士論文,共81頁。
波部忠重,1977,二枚貝綱/掘足綱:日本國東京都北隆館發行,共372頁。
陳文山、李匡悌、臧振華、朱正宜,2009,全新世以來台灣西南部海岸與平原的沉積環境變遷。
陳昱琪,2016,:臺灣臺南七股現生牡蠣殼體穩定氧同位素紀錄及其於季節性之應用:國立臺灣師範大學地球科學研究所碩士論文,共101頁。
彭宗仁、汪中和、陳鎮東,1990,苗栗白沙屯過港貝化石層內軟體動物化石之碳氧同位素研究:經濟部中央地質調查所特刊,第四號,第307-322 頁。
彭宗仁、劉滄棽、林幸助,2006,穩定同位素在農業及生態環境上之應用,台灣農業研究,55: 79-90。
黃丁郎,1974,牡蠣養殖:台灣銀行季刊,第25期,第218-221頁。
楊夢南,1996,台灣長牡蠣(Crassostrea gigas, Thunberg)基礎生物學的研究:國立台灣大學漁業科學研究所碩士論文,共134頁。
雷淑芬,1990,彰化蚵寮沿岸產巨牡蠣之食性與成長:國立台灣大學漁業科學研究所碩士論文,共60頁。
臧振華、李匡悌,2013,南科的古文明,國立台灣史前文化博物館,共357頁。
臧振華、李匡悌、朱正宜,2006,先民履跡:臺南縣新營市:臺南縣政府,共329頁。
蔡政霖,2004。台灣牡蠣養殖產業之經濟分析。國立台灣海洋大學水產養殖學系碩士論文。共104頁。
繆端生,1953,台灣牡蠣的種類生理及養殖:中國水產,第11卷,第30-34頁。
Al-Dabbas, M.A., and Al-Jaberi, M.H.A., 2014, Geochemistry of Crassostrea cucullata shells as environmental contamination indicator in Iraqi coasts, North Arabian Gulf. Arabian Journal of Geosciences, 8(8), p. 5767–5777.
Anderson, T.F., and Arthur, M.A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M.A et al., (eds): Stable isotopes in sedimentary geology, SEPM short Course Note, v. 10, p. 1-151.
Andeus, C.T., and Crowe, D., 2000, Geochemical Analysis of Crassostrea virginica as a Method to Determine Season of Capture: Journal of Archaeological Science, v. 27, p. 33-42.
Araguás-Araguás L., Froehlich K., and Rozanski K. ,1998, Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research 103:28721-28,742.
Audrus, C.F.T., and Crowe, D. E., 2000, Geochemical Analysis of Crassostrea vitginica as a Method to Determine Season of Capture: journal of Archaeological Science, v. 27, no. 1, p. 33-42.
Briffa, K.R., Osborn, T.J., Schweingruber, F.H., Harris, I.C., Jones, P.D., Shiyatov, S.G., and Vaganov, E.A., 2001, Low-frequency temperature variations from a northern tree ring density network: Journal of Geophysical Research, v. 106, p. 2929-2941.
Carriker, M.R., and Palmer, R.E., 1979, A new mineralized layer in the hinge of the oyster: Science, v. 206.
Clark, I., and Fritz, I., 1997, Environmental Isotopes in Hydrogeology.Boca Raton, Lewis
Craig, H., and Gordon, L.I., 1965, Isotopic oceanography;deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in Symposium on marine geochemistry, 1964: Occasional Pubblication Narragansett Marine Laboratory, University of Rhode Island, p. 277-234.
Custer, J.F., and Doms, K.R., 1990, Analysis of microgrowth patterns of the American oyster (Crassostrea virginica) in the middle Atlantic region of eastern North America: Archaeological applications: Journal of Archaeological Science, v. 17, p. 151-160.
Dankers, N.M.J.A., Dijkman, E.M., de Jong, M.L., de Kort, G., and Meijboom, A., 2004, De verspreiding en uitbreidig van de Japanse Oester in de Nederlandse Waddenzee. –Alterra-rapport 909: 51 pp.
Dansgaard, W, 1964, Stable isotopes in precipitation. Tellus. 16: 436-468.
Epstein, S. and Lowenstam, H.A., 1953, Temperature-shell-growth relations of recent and interglacial PleistoTocene shoal-water biota from Bermuda. J. Geol., 61, p. 424-438.
Epstein, S.and Mayeda, T., 1953, Variation of 18O content of waters from natural sources. Geo Chim. Cosmschim. Acta., 4, p. 213-224.
Epstein, S., Buchsbaum, R., Lowenstam, H.A. and Urey, H.C, 1953, Revised Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull., 64, p.1315-1326.
Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C, 1951, Carbonate-water isotopic temperature scale. Bull. Geol. Soc. Am., 62, p. 417-426.
Fan, C., Wang, H., Pei, Y., Koeniger, P., and Li, Y., 2010, Stable Isotope Sclerochronology Study of Oyster Shells, Advances in Earth Science, Vo.l 25, no. 2, p. 163-173.
Fan, C., Koeniger, P., Wang, H., and Frechen, M., 2011, Ligamental increments of the mid-Holocene Pacific oyster Crassostrea gigas are reliable independent proxies for seasonality in the western Bohai Sea, China: Palaeogeography Palaeoclimatology Palaeoecology, vol. 299, p. 437-448.
Fan, K.L, 1982, A study of water masses in Taiwan Strair. Acta Oceanographica Taiwanica. 13: p. 140-153
Gat, J.R., 1981, Groundwater. In: J. R. Gat and Gonfiantini (eds.), Stable Isotope Hydrology: Deuterium and oxygen-18 in the cycle, IAEA, Vienna, Tech. Rep. Ser. no. 210.
Gayantha, K., Routh, J., and Chandrajith, R., 2017, A multi-proxy reconstruction of the late Holocene climate evolution in Lake Bolgoda, Sri Lanka: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 473, p. 16-25.
Gentry, D.K., Sosdian, S., Grossman, E.L., Rosenthal, Y., D., H., and Lear, C.H., 2008, Stable isotope and Sr/Ca profiles from the marine Gastropod Conus Ermineus: Testing a multiproxy approach for inferring paleotemperature and paleosalinity: Palaios, v. 23, p. 195-209.
Griggs, C., Peteet, D., Kromer, B., Grote, T., and Southon, J., 2017, A tree-ring chronology and paleoclimate record for the Younger Dryas-Early Holocene transition from northeastern North America. Journal of Quaternary Science, (32), p. 341-346.
Grossman, E.L., Yancey, T., Jones, T., Bruckschen, P., Chuvashov, B., Mazzullo, S., and Mii, H., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 222-233
Grottoli, A.G., Eakin, C.M., 2007, A review of modern coral δ18O and δ14C proxy records. Earth Science Reviews. 81, p. 67–91.
Gu X., Pang H., and Li Y., 2019, Study on Calibration Method for Atmospheric Water Vapor Stable Isotopes Obsered by Cavity Ring-Down Spectroscopy: Spectroscopy and Spectral Analysis.Vol.39, No.6
Harry, H.W., 1985, Synopsis of the superaspecific classification of living oyster (Bivalvia: Gryphaeidaeand Ostreidae): The Veliger, vol. 28, p. 121-158.
Hays, P.D., and Grossman, E.T., 1991, Oxygen isotope in meteoric calcite cements as indicators ofcontimental climate: Geology, vol. 19, p. 441-444.
Hellings, L., Dehairs, F., Tack, M., Keppens, E., and Baeyens, W., 1999, Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition: Biogeochemistry, v. 47, p. 167-186.
ISSG, 2005, Global Invasive Species Data Base -Crassostrea gigas. -Invasive Species Specialist Group. Web publication. Journal of Shellfish Research, v. 12, p. 207-214.
Jung, Y.Y., Koh, D.C., Lee, J. and Ko, K.S., 2013, Applications of isotope ratio infrared spectroscopy (IRIS) to analysis of stable isotopic compositions of liquid water. Econ. Environ. Geol., v.46, No.6, p.495-508.
Kaplan, M.R., Wolfe, A.P., and Miller, G.H., 2002, Holocene Environmental Variability in Southern Greenland Inferred from Lake Sediments.: Quaternary Research, v. 58, p. 149-159.
Kent, R.W., 1988, Making dead oysters talk: Techniques for analyzing oysters from archaeoloogical sites: Maryland Historical Trust, St. Marys City, p. 107.
Kirby, M.X., Soniat, T.M., and Spero, H.J., 1998, Stable Isotope Sclerochronology of Pleistocene and Recent Oyster (Crassostrea virginica): Palaios, v. 13, p. 560-569.
Kopaevich, L.F., and Gorbachik, T.N., 2017, Shell morphology of cretaceous planktonic foraminifers as a means for paleoenvironment reconstructions. Paleontological Journal, 51(1), p.1–12.
Ku, T.-L., and Li, H.-C., 1998, Speleothems as high-resolution paleoenvironment archives: records from northeastern China. Proceedings of the Indian Academy of Sciences. Earth and Planetary Sciences 107, p. 321-330.
Kuroda, T., 1941, A catalogue of molluscan shells from Taiwan (Formosa), with description of new species. Memoirs of the Faculty of Science and Agriculture, Taihoku Imperial University.22(4), p. 66-216.
Langlet, D., Alunno-Bruscia, M., Rafelis, M., Renard, M., Roux, M., Schein, E., and Buestel, D, 2006, Experimental and natural cathodoluminescence in the shell of Crassostrea gigas from Thau 15 lagoon (France): Ecological and environmental implications, Mar. Ecol. Prog. Ser., 317, p. 143–156.
Li, H.-C., Zhao, M., Tsai, C.-H., Mii, H.-S., Chang, Q., and Wei, K.-Y., 2015, The first high-resolution stalagmite record from Taiwan: Climate and environmental changes during the past 1300 years. Journal of Asian Earth Sciences, 114, p. 574–587.
Liew, P.M., Wu, M.H., Lee, C.Y., Chang, C.L., and Lee, T.Q., 2014, Recent 4000 years of climatic trends based on pollen records from lakes and a bog in Taiwan. Quaternary International, 349, p. 105-112.
Lorio, W.J., and Malone, S., 1994, The cultivation of American oysters (Crassostrea virginica): Southern Regional Aquaculture Center. SRAC Publication No. 432, p. 2-7.
Maejima, I., and Tagami Y., 1983, Climate of Little Ice Age in Japan, Geogr. Rep. Tokyo Metrop. Univ., 18, p. 91-111.
Malchus, N., 2008, Problems concerning early oyster evolution: A reply to Márquez-Aliaga and Hautmann. Palaeogeography, Palaeoclimatology, Palaeoecology, 258(1-2), p.130-134.
Martinus, A.W., 1991, Growth rates and population dynamics in Crassostrea cf. rarilamella from the Lower Eocene Roda Formation (southern Pyrenees, Spain): Geologie en Mijnbouw, v. 70, p. 59-73.
McCrea, J.M., 1950, On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale.J.Chem Phys,18, p.849-857
Milner, N., 2001, At the cutting edge: using thin sectioning to determine season of death of the European Oyster, Ostrea edulis: Journal of Archaeological Science, v. 28, p. 861-873
Miossec, L., Le Deuff, R.M. and Goulletquer, P., 2009, Alien species alert: Crassostrea gigas (Pacific oyster). –ICES Cooperative Research Report 299: 42pp.
Moore, R.C., 1971, Treatise on Invertebrate Paleontology, Part N Bivalvia: The Geological Society of America, Inc, vol. 3, p. 954-1218.
Nehring, S., 2011, NOBANIS –Invasive Alien Species Fact Sheet –Crassostrea gigas.–From: Online Database of the European Networkon Invasive Alien Species –NOBANIS www.nobanis.org.
Nicholson, C., Minckley, T.A., and Shinker, J.J., 2019, Validating CCSM3 paleoclimate data using pollen-based reconstruction in the intermountain west. Quaternary Science Reviews, 222. 105911.
NIMPIS, 2002. Pacific oyster Crassostrea gigas. –In: Hewitt C.L., Martin R.B., Sliwa C., McEnnulty, F.R., Murphy, N.E., Jones T. and Cooper, S. (eds.), National Introduced Marine Pest Information System. Web publication.
O’Leary MH, 1988, Carbon isotopes in photosynthesis. BioScience 38, p. 328-36
Pannella, G., and MacClintlock, C., 1968, Biological and environmental rhythms reflected in molluscan shell growth: Journal of Paleontology, vol. 42, p. 64-80.
Paulsen, D.E., Li, H.C., and Ku, T.L., 2003, Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quaternary Science Reviews 22, p. 691-701.
Peng, T.R., Wang, C.H., Huang, C.C. Fei, L.Y., Chen C.T.A. and Hwong, J.L., 2010, Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters. 289: p. 357-366.
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pe´ pin, L., Ritz, C., Saltzmank, E., and Stievenard, M., 1999, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica: Nature, v. 399, p. 429-436.
Railsback, L.B., Anderson, T.F., Ackerly, S.C., and Ciane, J.L., 1989, Paleoceanographic modeling of temperature-salinity profiles from stable isotope data: Paleoceanography, v.4, p.585-591.
Richardson, C.A., Seed, R., Al-Roumaihi, E.M.H., and McDononald, L., 1993, Distribution, shell growth and predation of the New Zealand oyster, Tiostrea (= Ostrea) lutaria Hutton in the MenaiStrait: North Wales.
Rozanski, K., Araguás‐Araguás, L. and Gonfiantini, R., 1993, Isotopic patterns in modern global precipitation. Climate change in continental isotopic records. 1-36.
Ruddiman, W. F., 2000, Earth’s Climate - past and future:W. H. Freeman and Company, New York, p. 441.
Sambol, M., and Finks, R.M., 1977, Natural selection in a Cretaceous oyster: Paleobiology, v. 3, p. 1-16.
Schifano, G., and Censi, P., 1983, Oxygen isotope composition and rate of growth of patella coerulea, Monodonta turbinate and M. articulate shells from the westem coast of sicily: Palaeogeography, Palaeclimatology, Palaeoecology, v.42, no. 3-4, p. 305-311.
Senturk, F., Bursali, S., Omay, Y., Ertan, I., Guler, S., Yalcin, H., and Onhan, E., 1970, Isotope techniques applied to groundwater movement in the Konia plain. In: Isotope Hydrology 1970, IAEA, Vienna, p.53-64.
Spero, H.J., Bijima, J., W., Lea, D., and Bemis, B.E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390, p. 497-500.
Steiger, N.J., Steig, E.J., Dee, S.G., Roe, G.H., and Hakim, G.J., 2017, Climate reconstruction using data assimilation of water isotope ratios from ice cores. Journal of Geophysical Research: Atmospheres, 122(3), 1545–1568.
Stenzel, H.B., 1963, Aragonite and calcite as constituents of adult oyster shells: Science, v. 142, p. 232-233.
Stenzel, H.B., 1971, Oyster: in Moore, R.C., ed., Treatise on invertebrate paleontology: Geological Society of America and University of Kansas, Part N, vol. 3, Mollusca 6, Bivalvia, p. 953-1224.
Surge, D.M., Lohmann, K.C., and Dettman, D.L., 2001, Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns.: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 172, p. 283-296.
Surge, D.M., Lohmann, K.C., and Dettman, D.L., 2003, Reconstructing estuarine conditions: oyster shells as recorders of environmental change, Southwest Florida: Estuarine Coastal and Shelf Science, v. 57, p. 737-756.
Ullmann, C.V., Wiechert, U., and Korte, C., 2010, Oxygen isotope fluctuations in a modern North sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies: Chemical Geology, vol. 277, p. 160-166.
Urey, H.C., 1947, The thermodynamic properties of isotopic subtances : Journal of Chemical Society pt. l, p. 562-581.
Wang, C.H. and Liu, W.C., 1995, Preliminary results of stable isotope determinations for groundwaters of the alluvial plain in north Chia-Nan area, Taiwan, Institue of Earth Sciences, Academia Sinica, IES-EP95-003, p. 42.
Wang, H., Keppens, E., Nielsen, P., and van Riet, A., 1995, Oxygen and carbon isotope study of the Holocene oyster reefs and paleoenvironmental reconstruction on the northwest coast of Bohai Bay, China: Marine Geology, v. 124, p. 289-302.
Wang, L.C., Behling, H., Lee, T.Q., Li, H.C., Huh, C.A., Shiau, L. J., Chen, S. W., and Wu, J. T., 2013, Increased precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake. Journal of paleolimnology, 49(4) , p. 619-631.
Wang, T., and Li, Q., 2018, Effects of Salinity and Temperature on Growth and Survival of Juvenile Iwagaki Oyster Crassostrea nippona. Journal of Ocean University of China, 17(4), p. 941–946.
Whyte, M.A., 1975, Time, tide, and the cockle. In Growth Rhythms and the History of the Earth’s Rotation. (G. D. Rosenburg and S. K. Runcorn, Eds) London: John Wiley and Sons, p. 177-189.
Xiao, D., Zhou, X., and Zhao, P., 2011, Numerical simulation study of temperature change over East China in the past millennium: Science China: Earth Sciences, vol. 55, p. 1504-1517.
Zhang, P., Cheng, H., Edwards, R.L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, Ji., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., Johnson, and K.R.,2008, A test of climate, sun and culture relationships from a 1810-Year Chinese cave record. Science 322 (5903), p. 940-942.