簡易檢索 / 詳目顯示

研究生: 陳柏年
Chen, Po-Nien
論文名稱: 以基於決策實驗室分析法之網路流程預測汰役電池發展之情境分析與應用
Decision Making Trial and Evaluation Laboratory Based Analytic Network Process for Scenario Development and Application Definition of Retired Batteries
指導教授: 洪翊軒
Hung, Yi-Hsuan
口試委員: 黃日鉦
Huang, Jih-Jeng
陳良駒
Chen, Liang-Chu
洪翊軒
Hung, Yi-Hsuan
口試日期: 2023/07/21
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 233
中文關鍵詞: 汰役電池決策實驗室分析法基於決策研究室分析法之網路流程多屬性決策分析最佳化妥協解方法宏觀環境分析儲能設施
英文關鍵詞: Retired Batteries, Decision Making Trial and Evaluation Laboratory (DEMATEL), DEMATEL based Analytic Network Process (DANP), Multiple Attribute Decision Making (MADM), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Political; Economic; Social; Technological; Environmental and Legal (PESTEL), Energy Storage
研究方法: 調查研究德爾菲法
DOI URL: http://doi.org/10.6345/NTNU202301560
論文種類: 學術論文
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汰役電池為「汽車應用壽命」已盡,但仍具有約七成至八成剩餘容量的電池。近年來,隨著電動車日漸普及,汰役電池之數量日增。由於全球主要國家或經濟體積極推動循環經濟與永續發展,因此,汰役電池應用之預測與產業發展至關重要。雖然如此,相關研究甚少,為跨越研究缺口,本研究擬預測汰役電池產業未來之發展情境,並且前瞻各情境下之應用。
    為達成此目標,本研究首先邀集專家,以修正式德菲法確認宏觀環境分析法 (Political, Economic, Social, Technological; Environmental and Legal,PESTEL)之中,各個構面作為情境驅動軸之適用性,其次,使用決策實驗室分析法(Decision Making Trial and Evaluation Laboratory,DEMATEL),建構構面和準則間的影響關係,並以基於決策實驗室分析法之網路流程(DEMATEL-based Analytic Network Process,DANP),推衍每個構面和準則的影響關係權重後,選出三個未來情境最重要的驅動軸之後,以每個驅動軸的正向和反向驅動力,組合八種情境,最後,導入最佳化妥協解法(VIseKriterijumska Optimizacija I Kompromisno Resenje,VIKOR),選擇未來五年我國汰役電池產業發展最適合的三種最佳情境。為選擇各情境之下,汰役電池最適合的應用,第二階段研究首先將確認十二種汰役電池的應用方案,再邀集專家,以第一階段宏觀環境分析法之構面與準則,導入最佳化妥協解法,評估三種情境下之最適應用方案。
    依據實證研究結果,主要情境驅動軸為技術、法規與經濟,最可能的情境有三,於技術好、法規支持及經濟成長之情境中,最適合的應用為風力發電、太陽能發電、與工廠儲能;技術好、法規不支持及經濟成長之情境中,最適合的應用為太陽能發電,其餘應用與情境一相同;而於技術好、法規支持及經濟衰退之第三種情境中,最適合的應用為工廠儲能、風力發電與行動儲能裝置。本研究之結果,可作為政府訂定政策,或相關產業發展汰役電池之用。

    Retired batteries refer to batteries that have achieved the termination of their "vehicle application lifetime," but still retaining approximately 70% to 80% of their remaining capacity. In recent times, there has been a notable increase in the popularity of electric vehicles, leading to a corresponding rise in the quantity of decommissioned batteries. The promotion of circular economy and sustainable development by numerous major countries and economies worldwide has made forecasting and industry development pertaining to retired battery usage increasingly imperative. However, it is evident that there exists a dearth of pertinent scholarly investigations in this area. In order to address the existing research void, the primary objective of this study is to forecast alternative future trajectories for the retired battery business and anticipate the various applications that may arise within each projected scenario.
    In order to accomplish this objective, the study initially assembled a panel of experts to modify the macro-environment analysis technique known as Political, Economic, Social, Technological, Environmental, and Legal (PESTEL), with the intention of utilizing it as scenario-driving axis. Furthermore, the study utilized the Decision Making Trial and Evaluation Laboratory (DEMATEL) analysis method to determine the influence linkages between dimensions and criteria. The study employed the DEMATEL-based Analytic Network Process (DANP) to determine the weights of influence relations for each dimension and criterion. Three axes that drive scenarios were subsequently chosen as the most significant. The combination of these axes, along with both positive and negative driving forces, resulted in the emergence of eight potential scenarios. The VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) multi-criteria optimization approach was utilized to select the three most appropriate scenarios for the future development of the retired battery industry in the country within a five-year timeframe.
    In order to determine the most appropriate applications for retired batteries in various scenarios, the second phase of the study initially identified twelve prospective application schemes. Following that, experts were engaged to assess the most effective implementation strategies within the three scenarios, utilizing the dimensions and criteria derived from the macro-environment analysis conducted in the initial phase.
    Based on empirical research results, the primary scenario-driving axes are technology, regulations, and economics. The most probable scenarios can be categorized into three: in the context of advanced technology, supportive regulations, and economic growth, the most suitable applications are wind power generation, solar power generation, and industrial energy storage. In the context of advanced technology, unsupportive regulations, and economic growth, solar power generation is the most suitable application, while the other applications remain consistent with the first scenario. In the third scenario, characterized by advanced technology, supportive regulations, and economic recession, the most appropriate applications are industrial energy storage, wind power generation, and mobile energy storage devices. The findings of this study can serve as a basis for government policy formulation or for the development of relevant industries involved in the utilization of retired batteries.

    Chapter 1 Introduction 1 1.1 Research Background 2 1.2 Research Motivations and Problem 4 1.3 Research Purposes 6 1.4 Research Framework 8 1.5 Research Processes 9 1.6 Research Limitations 13 1.7 Thesis Structure 14 Chapter 2 Literature Review 17 2.1 History of Adopting Retired Battery 18 2.2 Circular Economy 20 2.3 Technology Assessment 22 2.4 Technology Forecasting 25 2.5 PESTEL 30 2.6 The Circular Economy of Retired Batteries 32 2.7 Application of Retired Batteries 38 Chapter 3 Research Methods 57 3.1 DEMATEL 61 3.2 DEMATEL based Analytic Network Process (DANP) 66 3.3 VIKOR Methods of Evaluating and Ranking 73 Chapter 4 Empirical Study 79 4.1 Modified Delphi Method Questionnaire 79 4.2 Confirm the Development Driving Force 85 4.3 Identify Development Scenarios and Applications 134 Chapter 5 Discussion 149 5.1 Driving Force for The Development of Retired Batteries 149 5.2 Scenario Analysis of The Development of The Retired Batteries Industry 166 5.3 Application Solutions for Retired Batteries 167 5.4 Limitations and Further Research Possibilities 171 Chapter 6 Conclusions 173 References 175 Appendixes 209 Appendix A Modified Delphi Method Questionnaire 209 Appendix B DANP Questionnaire 214 Appendix C VIKOR Questionnaire 228

    Abdelbaky, M., Peeters, J. R., & Dewulf, W. (2021). On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Waste Management, 125, 1-9. doi:https://doi.org/10.1016/j.wasman.2021.02.032

    Abdelbaky, M., Peeters, J. R., Duflou, J. R., & Dewulf, W. (2020). Forecasting the EU recycling potential for batteries from electric vehicles. Procedia CIRP, 90, 432-436. doi:https://doi.org/10.1016/j.procir.2020.01.109

    Agnew, S., & Dargusch, P. (2017). Consumer preferences for household-level battery energy storage. Renewable and Sustainable Energy Reviews, 75, 609-617. doi:https://doi.org/10.1016/j.rser.2016.11.030

    Agrawal, A., Gans, J. S., & Goldfarb, A. (2019). Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction. Journal of Economic Perspectives, 33(2), 31-50. doi:10.1257/jep.33.2.31

    Ainley, J. R. (1995). Environmental regulations: their impact on the battery and lead industries. Journal of Power Sources, 53(2), 309-314. doi:https://doi.org/10.1016/0378-7753(94)01972-X

    Al-Alawi, M. K., Cugley, J., & Hassanin, H. (2022). Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review. Energy and Climate Change, 3, 100086. doi:https://doi.org/10.1016/j.egycc.2022.100086

    Al-Omari, H., & Al-Omari, A. (2006). Building an e-Government e-trust infrastructure. American Journal of Applied Sciences, 3(11), 2122-2130.

    Al-Wreikat, Y., Attfield, E. K., & Sodré, J. R. (2022). Model for payback time of using retired electric vehicle batteries in residential energy storage systems. Energy, 259, 124975. doi:https://doi.org/10.1016/j.energy.2022.124975

    Alamerew, Y. A., & Brissaud, D. (2020). Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries. Journal of Cleaner Production, 254, 120025. doi:https://doi.org/10.1016/j.jclepro.2020.120025

    Alhadri, M., Zakri, W., & Farhad, S. (2023). Study on Integration of Retired Lithium-Ion Battery With Photovoltaic for Net-Zero Electricity Residential Homes. Journal of Solar Energy Engineering, 145(2), 021011.

    Ambrose, H., Gershenson, D., Gershenson, A., & Kammen, D. (2014). Driving rural energy access: a second-life application for electric-vehicle batteries. Environmental Research Letters, 9(9), 094004. doi:10.1088/1748-9326/9/9/094004

    Amin, A., Altinoz, B., & Dogan, E. (2020). Analyzing the determinants of carbon emissions from transportation in European countries: the role of renewable energy and urbanization. Clean Technologies and Environmental Policy, 22(8), 1725-1734. doi:10.1007/s10098-020-01910-2

    Anandarajan, A., & Wen, H. J. (1999). Evaluation of information technology investment. Management Decision, 37(4), 329-339. doi:10.1108/00251749910269375

    Aneke, M., & Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179, 350-377. doi:https://doi.org/10.1016/j.apenergy.2016.06.097

    Antunes Campos, R., Rafael do Nascimento, L., & Rüther, R. (2020). The complementary nature between wind and photovoltaic generation in Brazil and the role of energy storage in utility-scale hybrid power plants. Energy Conversion and Management, 221, 113160. doi:https://doi.org/10.1016/j.enconman.2020.113160

    Apribowo, C. H. B., Sarjiya, Hadi, S. P., & Wijaya, F. D. (2022, 18-20 Oct. 2022). Optimal Sizing and Siting of Battery Energy Storage Systems with Retired Battery. Paper presented at the 2022 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP).

    Assunção, A., Moura, P. S., & de Almeida, A. T. (2016). Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy. Applied Energy, 181, 120-131. doi:https://doi.org/10.1016/j.apenergy.2016.08.056

    Baazouzi, S., Rist, F. P., Weeber, M., & Birke, K. P. (2021). Optimization of Disassembly Strategies for Electric Vehicle Batteries. Batteries, 7(4), 74. Retrieved from https://www.mdpi.com/2313-0105/7/4/74

    Balachandra, P. (2011). Modern energy access to all in rural India: An integrated implementation strategy. Energy Policy, 39(12), 7803-7814. doi:https://doi.org/10.1016/j.enpol.2011.09.026

    Balakrishnan, S., & Wernerfelt, B. (1986). Technical change, competition and vertical integration. Strategic management journal, 7(4), 347-359.

    Bamakan, S. M. H., Nezhadsistani, N., Bodaghi, O., & Qu, Q. (2022). Patents and intellectual property assets as non-fungible tokens; key technologies and challenges. Scientific Reports, 12(1), 2178. doi:10.1038/s41598-022-05920-6

    Baniasadi, H., & Rashidi Mehrabadi, A. (2022). Finding interrelationships and influential weights of selected key performance indicators: important considerations in developing an overall performance index for water supply systems. Environment, Development and Sustainability. doi:10.1007/s10668-022-02753-1

    Banta, D. (2009). What is technology assessment? International Journal of Technology Assessment in Health Care, 25(S1), 7-9. doi:10.1017/S0266462309090333

    Barbu, A., & Militaru, G. (2019). The Moderating Effect of Intellectual Property Rights on Relationship between Innovation and Company Performance in Manufacturing Sector. Procedia Manufacturing, 32, 1077-1084. doi:https://doi.org/10.1016/j.promfg.2019.02.324

    Barksdale, H. C., & Darden, W. R. (1972). Consumer Attitudes toward Marketing and Consumerism. Journal of Marketing, 36(4), 28-35. doi:10.1177/002224297203600406

    Bhat, A. A., & Mishra, P. P. (2020). Evaluating the performance of carbon tax on green technology: evidence from India. Environmental Science and Pollution Research, 27(2), 2226-2237. doi:10.1007/s11356-019-06666-x

    Bhatt, A., Tiwari, S., & Ongsakul, W. (2018, 24-26 Oct. 2018). A Review on Re-Utilization of Electric Vehicle’s Retired Batteries. Paper presented at the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE).

    Bingjie, L., Jing, S., Hu, L., Linyuan, W., Guojing, L., & Hongda, Z. (2019). Comparative analysis of technology and economy on echelon battery energy storage. Paper presented at the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia).

    Bonsu, N. O. (2020). Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. Journal of Cleaner Production, 256, 120659. doi:https://doi.org/10.1016/j.jclepro.2020.120659

    Börner, M. F., Frieges, M. H., Späth, B., Spütz, K., Heimes, H. H., Sauer, D. U., & Li, W. (2022). Challenges of second-life concepts for retired electric vehicle batteries. Cell Reports Physical Science, 3(10), 101095. doi:https://doi.org/10.1016/j.xcrp.2022.101095

    Boxall, N. J., King, S., Cheng, K. Y., Gumulya, Y., Bruckard, W., & Kaksonen, A. H. (2018). Urban mining of lithium-ion batteries in Australia: Current state and future trends. Minerals Engineering, 128, 45-55. doi:https://doi.org/10.1016/j.mineng.2018.08.030

    Brady, S. R. (2015). Utilizing and adapting the Delphi method for use in qualitative research. International Journal of Qualitative Methods, 14(5), 1609406915621381.

    Buravleva, Y., Tang, D., & Bethel, B. J. (2021). Incentivizing Innovation: The Causal Role of Government Subsidies on Lithium-Ion Battery Research and Development. Sustainability, 13(15). doi:10.3390/su13158309

    Burch, I., & Gilchrist, J. (2018). Survey of global activity to phase out internal combustion engine vehicles. Center of Climate Protection: Santa Rosa, CA, USA.

    Canals Casals, L., Etxandi-Santolaya, M., Bibiloni-Mulet, P. A., Corchero, C., & Trilla, L. (2022). Electric Vehicle Battery Health Expected at End of Life in the Upcoming Years Based on UK Data. Batteries, 8(10), 164. Retrieved from https://www.mdpi.com/2313-0105/8/10/164

    Casals, L. C., García, B. A., Aguesse, F., & Iturrondobeitia, A. (2017). Second life of electric vehicle batteries: relation between materials degradation and environmental impact. The International Journal of Life Cycle Assessment, 22(1), 82-93. doi:10.1007/s11367-015-0918-3

    Caulfield, B., Furszyfer, D., Stefaniec, A., & Foley, A. (2022). Measuring the equity impacts of government subsidies for electric vehicles. Energy, 248, 123588. doi:https://doi.org/10.1016/j.energy.2022.123588

    Chen, M.-F., Tzeng, G.-H., & Ding, C. G. (2008). Combining fuzzy AHP with MDS in identifying the preference similarity of alternatives. Applied Soft Computing, 8(1), 110-117.

    Chen, P.-H., Lee, C.-H., Wu, J.-Y., & Chen, W.-S. (2023). Perspectives on Taiwan’s Pathway to Net-Zero Emissions. Sustainability, 15(6), 5587.

    Chin, Y. S. J., De Pretto, L., Thuppil, V., & Ashfold, M. J. (2019). Public awareness and support for environmental protection—A focus on air pollution in peninsular Malaysia. PloS one, 14(3), e0212206.

    Chiu, W.-Y., Tzeng, G.-H., & Li, H.-L. (2013). A new hybrid MCDM model combining DANP with VIKOR to improve e-store business. Knowledge-Based Systems, 37, 48-61. doi:https://doi.org/10.1016/j.knosys.2012.06.017

    Cho, Y., & Daim, T. (2013). Technology forecasting methods. Research and technology management in the electricity industry: Methods, tools and case studies, 67-112.

    Choi, D., Shamim, N., Crawford, A., Huang, Q., Vartanian, C. K., Viswanathan, V. V., . . . Sprenkle, V. L. (2021). Li-ion battery technology for grid application. Journal of Power Sources, 511, 230419. doi:https://doi.org/10.1016/j.jpowsour.2021.230419

    Chung, H.-C., Nguyen, T. D. H., Lin, S.-Y., Li, W.-B., Tran, N. T. T., Thi Han, N., . . . Lin, M.-F. (2021). Engineering integrations, potential applications, and outlooks of Li-ion battery industry. In First-Principles Calculations for Cathode, Electrolyte and Anode Battery Materials (pp. 16-11-16-43). doi:10.1088/978-0-7503-4685-6ch16

    Coates, J. F. (1976). The role of formal models in technology assessment. Technological Forecasting and Social Change, 9(1), 139-190. doi:https://doi.org/10.1016/0040-1625(76)90048-2

    Conway, G., Joshi, A., Leach, F., García, A., & Senecal, P. K. (2021). A review of current and future powertrain technologies and trends in 2020. Transportation Engineering, 5, 100080. doi:https://doi.org/10.1016/j.treng.2021.100080

    Costa, C. M., Barbosa, J. C., Gonçalves, R., Castro, H., Del Campo, F., & Lanceros-Méndez, S. (2021). Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Materials, 37, 433-465.

    Cox, B., Bauer, C., Mendoza Beltran, A., van Vuuren, D. P., & Mutel, C. L. (2020). Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios. Applied Energy, 269, 115021. doi:https://doi.org/10.1016/j.apenergy.2020.115021

    Crespo, M. S., González, M. V. G., & Peiró, L. T. (2022). Prospects on end of life electric vehicle batteries through 2050 in Catalonia. Resources, Conservation and Recycling, 180, 106133.

    Cruz-Castro, L., & Sanz-Menéndez, L. (2005). Politics and institutions: European parliamentary technology assessment. Technological Forecasting and Social Change, 72(4), 429-448. doi:https://doi.org/10.1016/j.techfore.2004.01.007

    Curtis, T. L., Smith, L., Buchanan, H., & Heath, G. (2021). A Circular Economy for Lithium-Ion Batteries Used in Mobile and Stationary Energy Storage: Drivers, Barriers, Enablers, and US Policy Considerations. Retrieved from

    Danino-Perraud, R. (2020). The recycling of lithium-ion batteries: A strategic pillar for the European Battery Alliance.

    De Rosa, M., Gainsford, K., Pallonetto, F., & Finn, D. P. (2022). Diversification, concentration and renewability of the energy supply in the European Union. Energy, 253, 124097. doi:https://doi.org/10.1016/j.energy.2022.124097

    de Sousa, G. C., & Castañeda-Ayarza, J. A. (2022). PESTEL analysis and the macro-environmental factors that influence the development of the electric and hybrid vehicles industry in Brazil. Case Studies on Transport Policy, 10(1), 686-699. doi:https://doi.org/10.1016/j.cstp.2022.01.030

    Debnath, R., Bardhan, R., Reiner, D. M., & Miller, J. R. (2021). Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis. Renewable and Sustainable Energy Reviews, 152, 111707. doi:https://doi.org/10.1016/j.rser.2021.111707

    Debnath, U. K., Ahmad, I., & Habibi, D. (2014). Quantifying economic benefits of second life batteries of gridable vehicles in the smart grid. International Journal of Electrical Power & Energy Systems, 63, 577-587. doi:https://doi.org/10.1016/j.ijepes.2014.05.077

    Debouza, M., Al-Durra, A., El-Fouly, T. H. M., & Zeineldin, H. H. (2022). Survey on microgrids with flexible boundaries: Strategies, applications, and future trends. Electric Power Systems Research, 205, 107765. doi:https://doi.org/10.1016/j.epsr.2021.107765

    Demartini, M., Ferrari, M., Govindan, K., & Tonelli, F. (2023). The transition to electric vehicles and a net zero economy: A model based on circular economy, stakeholder theory, and system thinking approach. Journal of Cleaner Production, 410, 137031. doi:https://doi.org/10.1016/j.jclepro.2023.137031

    Díez, A. E., Diez, I. C., Lopera, J. A., Bohorquez, A., Velandia, E., Albarracin, A., & Restrepo, M. (2012, 4-8 March 2012). Trolleybuses in Smart Grids as effective strategy to reduce greenhouse emissions. Paper presented at the 2012 IEEE International Electric Vehicle Conference.

    Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. doi:https://doi.org/10.1016/S1364-0321(99)00011-8

    Ding, Q., Khattak, S. I., & Ahmad, M. (2021). Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustainable Production and Consumption, 27, 254-268. doi:https://doi.org/10.1016/j.spc.2020.11.004

    Diouf, B., & Pode, R. (2015). Potential of lithium-ion batteries in renewable energy. Renewable Energy, 76, 375-380. doi:https://doi.org/10.1016/j.renene.2014.11.058

    Dotoli, M., Epicoco, N., & Falagario, M. (2020). Multi-Criteria Decision Making techniques for the management of public procurement tenders: A case study. Applied Soft Computing, 88, 106064. doi:https://doi.org/10.1016/j.asoc.2020.106064

    Droge, C., Calantone, R., & Harmancioglu, N. (2008). New product success: is it really controllable by managers in highly turbulent environments? Journal of Product Innovation Management, 25(3), 272-286.

    Dunn, J., Kendall, A., & Slattery, M. (2022). Electric vehicle lithium-ion battery recycled content standards for the US – targets, costs, and environmental impacts. Resources, Conservation and Recycling, 185, 106488. doi:https://doi.org/10.1016/j.resconrec.2022.106488

    Dunn, J. B., Gaines, L., Sullivan, J., & Wang, M. Q. (2012). Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries. Environmental Science & Technology, 46(22), 12704-12710. doi:10.1021/es302420z

    Dushnitsky, G., & Shapira, Z. (2010). Entrepreneurial finance meets organizational reality: Comparing investment practices and performance of corporate and independent venture capitalists. Strategic Management Journal, 31(9), 990-1017.

    Dzwigol, H., Aleinikova, O., Umanska, Y., Shmygol, N., & Pushak, Y. (2019). An entrepreneurship model for assessing the investment attractiveness of regions. Journal of Entrepreneurship Education, 22, 1-7.

    Eicke, L., Weko, S., Apergi, M., & Marian, A. (2021). Pulling up the carbon ladder? Decarbonization, dependence, and third-country risks from the European carbon border adjustment mechanism. Energy Research & Social Science, 80, 102240. doi:https://doi.org/10.1016/j.erss.2021.102240

    Eleftheriadis, P., Leva, S., Gangi, M., Rey, A. V., Borgo, A., Coslop, G., . . . Sedzik, M. (2022). Second Life Batteries: Current Regulatory Framework, Evaluation Methods, and Economic Assessment. Paper presented at the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Prague, Czech Republic.

    Ely, A., Van Zwanenberg, P., & Stirling, A. (2014). Broadening out and opening up technology assessment: Approaches to enhance international development, co-ordination and democratisation. Research Policy, 43(3), 505-518. doi:https://doi.org/10.1016/j.respol.2013.09.004

    Etxandi-Santolaya, M., Canals Casals, L., Montes, T., & Corchero, C. (2023). Are electric vehicle batteries being underused? A review of current practices and sources of circularity. Journal of Environmental Management, 338, 117814. doi:https://doi.org/10.1016/j.jenvman.2023.117814

    European Commission. (2020). Sustainable batteries for a circular and climate neutral economy. Retrieved from https://ec.europa.eu/commission/presscorner/detail/en/ip_20_2312

    Fallah, N., & Fitzpatrick, C. (2022a). How will retired electric vehicle batteries perform in grid-based second-life applications? A comparative techno-economic evaluation of used batteries in different scenarios. Journal of Cleaner Production, 361, 132281. doi:https://doi.org/10.1016/j.jclepro.2022.132281

    Fallah, N., & Fitzpatrick, C. (2022b). Techno-financial investigation of second-life of Electric Vehicle batteries for energy imbalance services in the Irish electricity market. Procedia CIRP, 105, 164-170. doi:https://doi.org/10.1016/j.procir.2022.02.028

    Ferdian, M. E. (2023). Tax Policy to Accelerate EV Infrastructure and Reducing National Carbon towards Net Zero Emission. Indonesian Journal of Multidisciplinary Science, 2(5), 2541-2549.

    Fontela, E., & Gabus, A. (1976). The DEMATEL observer. In: Dematel.

    Fuinhas, J. A., Koengkan, M., Leitão, N. C., Nwani, C., Uzuner, G., Dehdar, F., . . . Peyerl, D. (2021). Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries. Sustainability, 13(24), 13611. Retrieved from https://www.mdpi.com/2071-1050/13/24/13611

    Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Center, Geneva, Switzerland, 1(8), 12-14.

    Gao, A. (2019). Taiwan’s perhaps irresponsible policy and laws on a nuclear-free homeland by 2025: The missing piece of nuclear assets and legacy. Oil, Gas & Energy Law, 17(2).

    Garg, A., Yun, L., Gao, L., & Putungan, D. B. (2020). Development of recycling strategy for large stacked systems: Experimental and machine learning approach to form reuse battery packs for secondary applications. Journal of Cleaner Production, 275, 124152. doi:https://doi.org/10.1016/j.jclepro.2020.124152

    Gaskell, G., Eyck, T. T., Jackson, J., & Veltri, G. (2005). Imagining nanotechnology: cultural support for technological innovation in Europe and the United States. Public Understanding of Science, 14(1), 81-90. doi:10.1177/0963662505048949

    Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. doi:https://doi.org/10.1016/j.jclepro.2016.12.048

    Gernaat, D. E. H. J., de Boer, H. S., Daioglou, V., Yalew, S. G., Müller, C., & van Vuuren, D. P. (2021). Climate change impacts on renewable energy supply. Nature Climate Change, 11(2), 119-125. doi:10.1038/s41558-020-00949-9

    Ghiji, M., Novozhilov, V., Moinuddin, K., Joseph, P., Burch, I., Suendermann, B., & Gamble, G. (2020). A Review of Lithium-Ion Battery Fire Suppression. Energies, 13(19), 5117. Retrieved from https://www.mdpi.com/1996-1073/13/19/5117

    Gillard, S. (2022). (Invited) U.S. Department of Energy Initiatives in Lithium Battery Recycling and the Supply Chain. ECS Meeting Abstracts, MA2022-01(5), 583. doi:10.1149/MA2022-015583mtgabs

    Goodman, C. S. (2004). Introduction to health technology assessment. The Lewin Group. virginia, USA.

    Griffiths, S. (2017). Renewable energy policy trends and recommendations for GCC countries. Energy Transitions, 1(1), 3. doi:10.1007/s41825-017-0003-6

    Grunwald, A. (2009). Technology Assessment: Concepts and Methods. In A. Meijers (Ed.), Philosophy of Technology and Engineering Sciences (pp. 1103-1146). Amsterdam: North-Holland.

    Grunwald, A. (2015). Technology assessment. In Encyclopedia of Information Science and Technology, Third Edition (pp. 3998-4006): IGI Global.

    Gryparis, E., Papadopoulos, P., Leligou, H. C., & Psomopoulos, C. S. (2020). Electricity demand and carbon emission in power generation under high penetration of electric vehicles. A European Union perspective. Energy Reports, 6, 475-486.

    Gu, X., Zhou, L., Huang, H., Shi, X., & Ieromonachou, P. (2021). Electric vehicle battery secondary use under government subsidy: A closed-loop supply chain perspective. International Journal of Production Economics, 234, 108035. doi:https://doi.org/10.1016/j.ijpe.2021.108035

    Gullberg, A. T. (2013). The political feasibility of Norway as the ‘green battery’ of Europe. Energy Policy, 57, 615-623. doi:https://doi.org/10.1016/j.enpol.2013.02.037

    Gwo-Hshiung Tzeng, & Huang, J.-J. (2011). Multiple Attribute Decision Making Methods and Applications. New York: Chapman and Hall/CRC.

    Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda✰. Technological Forecasting and Social Change, 162, 120392. doi:https://doi.org/10.1016/j.techfore.2020.120392

    Han, X., Liang, Y., Ai, Y., & Li, J. (2018). Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries. Energy, 165, 326-339. doi:https://doi.org/10.1016/j.energy.2018.09.022

    Harputlugil, T., Prins, M., Gültekin, A. T., & Topçu, Y. I. (2011). Conceptual framework for potential implementations of multi criteria decision making (MCDM) methods for design quality assessment. Paper presented at the Management and Innovation for a Sustainable Built Environment MISBE 2011, Amsterdam, The Netherlands, June 20-23, 2011.

    Hezri, A. A., & Dovers, S. R. (2006). Sustainability indicators, policy and governance: Issues for ecological economics. Ecological Economics, 60(1), 86-99. doi:https://doi.org/10.1016/j.ecolecon.2005.11.019

    Hong, Y.-Y., Apolinario, G. F. D. G., Chung, C.-N., Lu, T.-K., & Chu, C.-C. (2020). Effect of Taiwan's energy policy on unit commitment in 2025. Applied Energy, 277, 115585. doi:https://doi.org/10.1016/j.apenergy.2020.115585

    Hu, X., Deng, X., Wang, F., Deng, Z., Lin, X., Teodorescu, R., & Pecht, M. G. (2022). A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proceedings of the IEEE, 110(6), 735-753. doi:10.1109/JPROC.2022.3175614

    Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., . . . Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478, 228753. doi:https://doi.org/10.1016/j.jpowsour.2020.228753

    Huang, C.-Y., Chung, P.-H., Shyu, J. Z., Ho, Y.-H., Wu, C.-H., Lee, M.-C., & Wu, M.-J. (2018). Evaluation and Selection of Materials for Particulate Matter MEMS Sensors by Using Hybrid MCDM Methods. Sustainability, 10(10), 3451. Retrieved from https://www.mdpi.com/2071-1050/10/10/3451

    Huang, C.-Y., Hsieh, H.-L., & Chen, H. (2020). Evaluating the Investment Projects of Spinal Medical Device Firms Using the Real Option and DANP-mV Based MCDM Methods. International Journal of Environmental Research and Public Health, 17(9). doi:10.3390/ijerph17093335

    Huang, C.-Y., Shyu, J. Z., & Tzeng, G.-H. (2007). Reconfiguring the innovation policy portfolios for Taiwan's SIP Mall industry. Technovation, 27(12), 744-765. doi:https://doi.org/10.1016/j.technovation.2007.04.002

    Huang, C.-Y., & Tung, I. L. (2020). Strategies for heterogeneous R&D alliances of in vitro diagnostics firms in rapidly catching-up economies. International Journal of Environmental Research and Public Health, 17(10), 3688.

    Huang, C.-Y., & Tzeng, G.-H. (2010). Open R&D Strategies Based Innovation Competence Expansions of a Late Coming SoC Design Service Firm. International Journal of Information, 6(1), 1-23.

    Huang, C.-Y., Tzeng, G.-H., & Ho, W.-R. J. (2011). System on chip design service e-business value maximization through a novel MCDM framework. Expert Systems with Applications, 38(7), 7947-7962. doi:https://doi.org/10.1016/j.eswa.2010.12.022

    Huang, C.-Y., Wu, M.-J., Liu, Y.-W., & Tzeng, G.-H. (2012, 2012//). Using the DEMATEL Based Network Process and Structural Equation Modeling Methods for Deriving Factors Influencing the Acceptance of Smart Phone Operation Systems. Paper presented at the Advanced Research in Applied Artificial Intelligence, Berlin, Heidelberg.

    Huang, C.-Y., Yang, M.-J., Li, J.-F., & Chen, H. (2021). A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations. Mathematics, 9(18), 2280. Retrieved from https://www.mdpi.com/2227-7390/9/18/2280

    Huang, C. Y., Chen, H., Tzeng, G. H., & Hu, K. H. (2010, 25-28 July 2010). Enhancing the performance of a SOC design service firm by using a novel DANP based MCDM framework on the Balanced Scorecard. Paper presented at the The 40th International Conference on Computers & Indutrial Engineering.

    Huang, C. Y., Lin, Y. F., & Tzeng, G. H. (2011, 31 July-4 Aug. 2011). A Fuzzy DEMATEL based Lead User Method for deriving factors influencing the acceptance of an innovative technology. Paper presented at the 2011 Proceedings of PICMET '11: Technology Management in the Energy Smart World (PICMET).

    Huang, C. Y., Wang, C. W., Tzeng, G. H., & Lin, Y. F. (2011, 31 July-4 Aug. 2011). Defining the R&D expatriate assignment strategies of globalized high technology enterprises by hybrid MCDM models. Paper presented at the 2011 Proceedings of PICMET '11: Technology Management in the Energy Smart World (PICMET).

    Huang, J. J., & Tzeng, G. H. (2007, 24-27 Aug. 2007). A Constrained Fuzzy Arithmetic Method for the Fuzzy Analytic Network Process. Paper presented at the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

    Huang, Z., Xie, Z., Zhang, C., Chan, S. H., Milewski, J., Xie, Y., . . . Hu, X. (2019). Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system. Energy Conversion and Management, 181, 80-92. doi:https://doi.org/10.1016/j.enconman.2018.11.079

    Hwang, C.-L., & Yoon, K. (1981). Methods for Multiple Attribute Decision Making. In C.-L. Hwang & K. Yoon (Eds.), Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey (pp. 58-191). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Ilieva, I., & Rajasekharan, J. (2018, 3-7 June 2018). Energy storage as a trigger for business model innovation in the energy sector. Paper presented at the 2018 IEEE International Energy Conference (ENERGYCON).

    Islam, M. T., & Iyer-Raniga, U. (2022). Lithium-Ion Battery Recycling in the Circular Economy: A Review. Recycling, 7(3), 33. Retrieved from https://www.mdpi.com/2313-4321/7/3/33

    Issa, T., Chang, V., & Issa, T. (2010). Sustainable business strategies and PESTEL framework. GSTF International Journal on Computing, 1(1), 73-80.

    J. I, L., Dominguez, E., Wu, L., Alcaide, A. M., Reyes, M., & Liu, J. (2021). Hybrid Energy Storage Systems: Concepts, Advantages, and Applications. IEEE Industrial Electronics Magazine, 15(1), 74-88. doi:10.1109/MIE.2020.3016914

    Jeong, B., Jang, H., Lee, W., Park, C., Ha, S., & Cho, N.-K. (2022). Is electric battery propulsion for ships truly the lifecycle energy solution for marine environmental protection as a whole? Journal of Cleaner Production, 355, 131756.

    Jing, R., Wang, J., Shah, N., & Guo, M. (2021). Emerging supply chain of utilising electrical vehicle retired batteries in distributed energy systems. Advances in Applied Energy, 1, 100002. doi:https://doi.org/10.1016/j.adapen.2020.100002

    Kampker, A., Heimes, H. H., Offermanns, C., Frieges, M. H., Graaf, M., Soldan Cattani, N., & Späth, B. (2023). Cost-Benefit Analysis of Downstream Applications for Retired Electric Vehicle Batteries. World Electric Vehicle Journal, 14(4). doi:10.3390/wevj14040110

    Kapustin, N. O., & Grushevenko, D. A. (2020). Long-term electric vehicles outlook and their potential impact on electric grid. Energy Policy, 137, 111103. doi:https://doi.org/10.1016/j.enpol.2019.111103

    Kebir, N., Leonard, A., Downey, M., Jones, B., Rabie, K., Bhagavathy, S. M., & Hirmer, S. A. (2023). Second-life battery systems for affordable energy access in Kenyan primary schools. Scientific Reports, 13(1), 1374. doi:10.1038/s41598-023-28377-7

    Keeble, B. R. (1988). The Brundtland report: ‘Our common future’. Medicine and War, 4(1), 17-25. doi:10.1080/07488008808408783

    Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud Ali, W. K., Alam, M., . . . Gani, A. (2014). Big data: survey, technologies, opportunities, and challenges. The scientific world journal, 2014.

    King, S., & Boxall, N. J. (2019). Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry. Journal of Cleaner Production, 215, 1279-1287. doi:https://doi.org/10.1016/j.jclepro.2019.01.178

    King, S., Boxall, N. J., & Bhatt, A. I. (2018). Lithium battery recycling in Australia. Commonwealth Science and Industrial Research Organisation: Melbourne, Australia.

    Kline, S. J., & Rosenberg, N. (2010). An overview of innovation. Studies on science and the innovation process: Selected works of Nathan Rosenberg, 173-203.

    Koch-Ciobotaru, C., Saez-de-Ibarra, A., Martinez-Laserna, E., Stroe, D. I., Swierczynski, M., & Rodriguez, P. (2015, 20-24 Sept. 2015). Second life battery energy storage system for enhancing renewable energy grid integration. Paper presented at the 2015 IEEE Energy Conversion Congress and Exposition (ECCE).

    Kosai, S., Takata, U., & Yamasue, E. (2021). Natural resource use of a traction lithium-ion battery production based on land disturbances through mining activities. Journal of Cleaner Production, 280, 124871. doi:https://doi.org/10.1016/j.jclepro.2020.124871

    Kuan, M., Tzeng, G., & Hsiang, C. (2012). Exploring the quality assessment system for new product development process by combining DANP with MCDM model. International Journal of Innovative Computing, Information and Control, 8(8), 5745-5762.

    Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. doi:https://doi.org/10.1016/j.rser.2016.11.191

    Kumar, S., & Putnam, V. (2008). Cradle to cradle: Reverse logistics strategies and opportunities across three industry sectors. International Journal of Production Economics, 115(2), 305-315. doi:https://doi.org/10.1016/j.ijpe.2007.11.015

    Kuramochi, T., Roelfsema, M., Hsu, A., Lui, S., Weinfurter, A., Chan, S., . . . Höhne, N. (2020). Beyond national climate action: the impact of region, city, and business commitments on global greenhouse gas emissions. Climate Policy, 20(3), 275-291. doi:10.1080/14693062.2020.1740150

    Lai, X., Chen, Q., Tang, X., Zhou, Y., Gao, F., Guo, Y., . . . Zheng, Y. (2022). Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. eTransportation, 12, 100169. doi:https://doi.org/10.1016/j.etran.2022.100169

    Lee, J. W., Haram, M. H. S. M., Ramasamy, G., Thiagarajah, S. P., Ngu, E. E., & Lee, Y. H. (2021). Technical feasibility and economics of repurposed electric vehicles batteries for power peak shaving. Journal of Energy Storage, 40, 102752. doi:https://doi.org/10.1016/j.est.2021.102752

    Lehtonen, M., & Nye, S. (2009). History of electricity network control and distributed generation in the UK and Western Denmark. Energy Policy, 37(6), 2338-2345. doi:https://doi.org/10.1016/j.enpol.2009.01.026

    Lewandowski, M. (2016). Designing the Business Models for Circular Economy—Towards the Conceptual Framework. Sustainability, 8(1), 43. Retrieved from https://www.mdpi.com/2071-1050/8/1/43

    Lewicka, E., Guzik, K., & Galos, K. (2021). On the Possibilities of Critical Raw Materials Production from the EU’s Primary Sources. Resources, 10(5). doi:10.3390/resources10050050

    Li, J., He, S., Yang, Q., Ma, T., & Wei, Z. (2023). Optimal Design of the EV Charging Station With Retired Battery Systems Against Charging Demand Uncertainty. IEEE Transactions on Industrial Informatics, 19(3), 3262-3273. doi:10.1109/TII.2022.3175718

    Li, S., He, H., Chen, Y., Huang, M., & Hu, C. (2015). Optimization between the PV and the Retired EV Battery for the Residential Microgrid Application. Energy Procedia, 75, 1138-1146. doi:https://doi.org/10.1016/j.egypro.2015.07.537

    Li, X., & Wang, S. (2019). Energy management and operational control methods for grid battery energy storage systems. CSEE Journal of Power and Energy Systems, 7(5), 1026-1040.

    Liang, J., & Fiorino, D. J. (2013). The Implications of Policy Stability for Renewable Energy Innovation in the United States, 1974–2009. Policy Studies Journal, 41(1), 97-118.

    Lih, W. C., Yen, J. H., Shieh, F. H., & Liao, Y. M. (2012, 4-6 June 2012). Second Use of Retired Lithium-ion Battery Packs from Electric Vehicles: Technological Challenges, Cost Analysis and Optimal Business Model. Paper presented at the 2012 International Symposium on Computer, Consumer and Control.

    Liu, C.-H., Tzeng, G.-H., & Lee, M.-H. (2012). Improving tourism policy implementation – The use of hybrid MCDM models. Tourism Management, 33(2), 413-426. doi:https://doi.org/10.1016/j.tourman.2011.05.002

    Locatis, C. N., & Gooler, D. D. (1975). Evaluating Second-Order Consequences: Technology Assessment and Education. Review of Educational Research, 45(2), 327-353. doi:10.3102/00346543045002327

    Melin, H. E., Rajaeifar, M. A., Ku, A. Y., Kendall, A., Harper, G., & Heidrich, O. (2021). Global implications of the EU battery regulation. Science, 373(6553), 384-387. doi:doi:10.1126/science.abh1416

    Micari, S., Foti, S., Testa, A., De Caro, S., Sergi, F., Andaloro, L., . . . Napoli, G. (2022). Reliability assessment and lifetime prediction of Li-ion batteries for electric vehicles. Electrical Engineering, 104(1), 165-177. doi:10.1007/s00202-021-01288-4

    Miller, I., Gençer, E., & O’Sullivan, F. M. (2018). A General Model for Estimating Emissions from Integrated Power Generation and Energy Storage. Case Study: Integration of Solar Photovoltaic Power and Wind Power with Batteries. Processes, 6(12), 267. Retrieved from https://www.mdpi.com/2227-9717/6/12/267

    Monroe, A. D. (1979). Consistency between Public Preferences and National Policy Decisions. American Politics Quarterly, 7(1), 3-19. doi:10.1177/1532673x7900700101

    Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The review of higher education, 18(4), 423-436.

    Neubauer, J. S., Pesaran, A. A., Williams, B. D. H., Ferry, M., & Eyer, J. M. (2012). A Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value.

    Nguyen-Tien, V., Dai, Q., Harper, G. D. J., Anderson, P. A., & Elliott, R. J. R. (2022). Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy. Applied Energy, 321, 119230. doi:https://doi.org/10.1016/j.apenergy.2022.119230

    Okioga, I. T., Wu, J., Sireli, Y., & Hendren, H. (2018). Renewable energy policy formulation for electricity generation in the United States. Energy Strategy Reviews, 22, 365-384. doi:https://doi.org/10.1016/j.esr.2018.08.008

    Olabi, A. G., Wilberforce, T., Sayed, E. T., Abo-Khalil, A. G., Maghrabie, H. M., Elsaid, K., & Abdelkareem, M. A. (2022). Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy, 254, 123987. doi:https://doi.org/10.1016/j.energy.2022.123987

    Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. doi:https://doi.org/10.1016/S0377-2217(03)00020-1

    Ou Yang, Y.-P., Shieh, H.-M., Leu, J.-D., & Tzeng, G.-H. (2008). A novel hybrid MCDM model combined with DEMATEL and ANP with applications. International journal of operations research, 5(3), 160-168.

    Pacchini, A. P. T., Lucato, W. C., Facchini, F., & Mummolo, G. (2019). The degree of readiness for the implementation of Industry 4.0. Computers in Industry, 113, 103125. doi:https://doi.org/10.1016/j.compind.2019.103125

    Pagliaro, M., & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, 5(6), e01866. doi:https://doi.org/10.1016/j.heliyon.2019.e01866

    Palaniappan, K., Veerapeneni, S., Cuzner, R., & Zhao, Y. (2017, 27-29 June 2017). Assessment of the feasibility of interconnected smart DC homes in a DC microgrid to reduce utility costs of low income households. Paper presented at the 2017 IEEE Second International Conference on DC Microgrids (ICDCM).

    Palmer, H. D., & Whitten, G. D. (2000). Government competence, economic performance and endogenous election dates1Earlier versions of this paper were presented at the 1998 conference on “Economics and Elections: Comparisons and Conclusions” in Sandjerg Slot, Denmark, and the 1995 annual meetings of the American Political Science Association in Chicago, IL. Jimmy Franklin, George Hwang, Melissa Scheier, and Ed Vogelpohl provided valuable research assistance. As always, the authors are responsible for any remaining errors.1. Electoral Studies, 19(2), 413-426. doi:https://doi.org/10.1016/S0261-3794(99)00059-1

    Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon footprint: current methods of estimation. Environmental Monitoring and Assessment, 178(1), 135-160. doi:10.1007/s10661-010-1678-y

    Parlikar, A., Truong, C. N., Jossen, A., & Hesse, H. (2021). The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply. Renewable and Sustainable Energy Reviews, 149, 111353. doi:https://doi.org/10.1016/j.rser.2021.111353

    Parra, D., Gillott, M., Norman, S. A., & Walker, G. S. (2015). Optimum community energy storage system for PV energy time-shift. Applied Energy, 137, 576-587. doi:https://doi.org/10.1016/j.apenergy.2014.08.060

    Peng, K.-H., & Tzeng, G.-H. (2013). A hybrid dynamic MADM model for problem-improvement in economics and business. Technological and Economic Development of Economy, 19(4), 638-660. doi:10.3846/20294913.2013.837114

    Pererva, P., Kobielieva, T., Kuchinskyi, V., Garmash, S., & Danko, T. (2021). Ensuring the Sustainable Development of an Industrial Enterprise on the Principle of Compliance-Safety. Studies of Applied Economics, 39(5).

    Peter, W. (2010, 5-8 Dec. 2010). An economic assessment of “second use” lithium-ion batteries for grid support. Paper presented at the 2010 20th Australasian Universities Power Engineering Conference.

    Phophongviwat, T., Polmai, S., Maneeinn, C., Hongesombut, K., & Sivalertporn, K. (2023). Technical Assessment of Reusing Retired Electric Vehicle Lithium-Ion Batteries in Thailand. World Electric Vehicle Journal, 14(6). doi:10.3390/wevj14060161

    Picatoste, A., Justel, D., & Mendoza, J. M. F. (2022). Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines. Renewable and Sustainable Energy Reviews, 169, 112941. doi:https://doi.org/10.1016/j.rser.2022.112941

    Pimenova, P., & van der Vorst, R. (2004). The role of support programmes and policies in improving SMEs environmental performance in developed and transition economies. Journal of Cleaner Production, 12(6), 549-559. doi:https://doi.org/10.1016/j.jclepro.2003.07.001

    Poh, K. M., & Kong, H. W. (2002). Renewable energy in Malaysia: a policy analysis. Energy for Sustainable Development, 6(3), 31-39. doi:https://doi.org/10.1016/S0973-0826(08)60323-3

    Pražanová, A., Knap, V., & Stroe, D.-I. (2022). Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective. Energies, 15(19), 7356. Retrieved from https://www.mdpi.com/1996-1073/15/19/7356

    Priyadarshini, P., & Abhilash, P. C. (2020). Circular economy practices within energy and waste management sectors of India: A meta-analysis. Bioresource Technology, 304, 123018. doi:https://doi.org/10.1016/j.biortech.2020.123018

    Qian, G., Li, Z., Wang, Y., Xie, X., He, Y., Li, J., . . . Che, H. (2022). Value-creating upcycling of retired electric vehicle battery cathodes. Cell Reports Physical Science, 3(2), 100741.

    Quirós-Tortós, J., Ochoa, L. F., & Lees, B. (2015, 5-7 Oct. 2015). A statistical analysis of EV charging behavior in the UK. Paper presented at the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM).

    Ramachandaramurthy, V. K., Ajmal, A. M., Kasinathan, P., Tan, K. M., Yong, J. Y., & Vinoth, R. (2023). Social Acceptance and Preference of EV Users: A Review. IEEE Access.

    Rarotra, S., Sahu, S., Kumar, P., Kim, K. H., Tsang, Y. F., Kumar, V., . . . Lisak, G. (2020). Progress and challenges on battery waste management: a critical review. ChemistrySelect, 5(20), 6182-6193.

    Raybould, B., Cheung, W. M., Connor, C., & Butcher, R. (2020). An investigation into UK government policy and legislation to renewable energy and greenhouse gas reduction commitments. Clean Technologies and Environmental Policy, 22, 371-387.

    Rehman, H. u., Diriken, J., Hasan, A., Verbeke, S., & Reda, F. (2021). Energy and Emission Implications of Electric Vehicles Integration with Nearly and Net Zero Energy Buildings. Energies, 14(21), 6990. Retrieved from https://www.mdpi.com/1996-1073/14/21/6990

    Reinhardt, R., Domingo, S. G., García, B. A., & Christodoulou, I. (2017, 6-9 June 2017). Macro environmental analysis of the electric vehicle battery second use market. Paper presented at the 2017 14th International Conference on the European Energy Market (EEM).

    Reinhardt, R., García, B. A., Casals, L. C., & Domingo, S. G. (2016, 6-9 June 2016). Critical evaluation of European Union legislation on the second use of degraded traction batteries. Paper presented at the 2016 13th International Conference on the European Energy Market (EEM).

    Richter, J. L. (2022). A circular economy approach is needed for electric vehicles. Nature Electronics, 5(1), 5-7. doi:10.1038/s41928-021-00711-9

    Roscher, M. A., Assfalg, J., & Bohlen, O. S. (2011). Detection of Utilizable Capacity Deterioration in Battery Systems. IEEE Transactions on Vehicular Technology, 60(1), 98-103. doi:10.1109/TVT.2010.2090370

    Saaty, T. L. (1990). An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Management science, 36(3), 259-268.

    Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European journal of operational research, 145(1), 85-91.

    Saaty, T. L. (2004). Decision making—the analytic hierarchy and network processes (AHP/ANP). Journal of systems science and systems engineering, 13, 1-35.

    Saaty, T. L. (2007). Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Mathematical and Computer Modelling, 46(7), 860-891. doi:https://doi.org/10.1016/j.mcm.2007.03.028

    Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research, 61(5), 1101-1118.

    Saenz-Esteruelas, J., Figliozzi, M., Serrano, A., & Faulin, J. (2016, 2016//). Electrifying Last-Mile Deliveries: A Carbon Footprint Comparison between Internal Combustion Engine and Electric Vehicles. Paper presented at the Smart Cities, Cham.

    Sangswang, A., & Konghirun, M. (2020). Optimal Strategies in Home Energy Management System Integrating Solar Power, Energy Storage, and Vehicle-to-Grid for Grid Support and Energy Efficiency. IEEE Transactions on Industry Applications, 56(5), 5716-5728. doi:10.1109/TIA.2020.2991652

    Sathre, R., Scown, C. D., Kavvada, O., & Hendrickson, T. P. (2015). Energy and climate effects of second-life use of electric vehicle batteries in California through 2050. Journal of Power Sources, 288, 82-91.

    Sayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable Energy and Energy Storage Systems. Energies, 16(3), 1415. Retrieved from https://www.mdpi.com/1996-1073/16/3/1415

    Schiff, D. (2021). Out of the laboratory and into the classroom: the future of artificial intelligence in education. AI & SOCIETY, 36(1), 331-348. doi:10.1007/s00146-020-01033-8

    Schuller, A., Dietz, B., Flath, C. M., & Weinhardt, C. (2014). Charging Strategies for Battery Electric Vehicles: Economic Benchmark and V2G Potential. IEEE Transactions on Power Systems, 29(5), 2014-2022. doi:10.1109/TPWRS.2014.2301024

    Schulz-Mönninghoff, M., & Evans, S. (2023). Key tasks for ensuring economic viability of circular projects: Learnings from a real-world project on repurposing electric vehicle batteries. Sustainable Production and Consumption, 35, 559-575. doi:https://doi.org/10.1016/j.spc.2022.11.025

    Science, U. B. f., & Development., T. f. (1991). United Nations Workshop on Technology Assessment for Developing Countries. In: UN Branch for Science and Technology for Development Washington, DC, USA.

    Shah, K., Chalise, D., & Jain, A. (2016). Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells. Journal of Power Sources, 330, 167-174. doi:https://doi.org/10.1016/j.jpowsour.2016.08.133

    Shahgholian, G. (2021). A brief review on microgrids: Operation, applications, modeling, and control. International Transactions on Electrical Energy Systems, 31(6), e12885.

    Shahjalal, M., Roy, P. K., Shams, T., Fly, A., Chowdhury, J. I., Ahmed, M. R., & Liu, K. (2022). A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy, 241, 122881. doi:https://doi.org/10.1016/j.energy.2021.122881

    Sharma, S., Singh, J., Bishal, B., & Rahul, J. (2023, 23-25 March 2023). Review and Outlook on Energy Transition. Paper presented at the 2023 9th International Conference on Electrical Energy Systems (ICEES).

    Sheehy, B., & Farneti, F. (2021). Corporate Social Responsibility, Sustainability, Sustainable Development and Corporate Sustainability: What Is the Difference, and Does It Matter? Sustainability, 13(11), 5965. Retrieved from https://www.mdpi.com/2071-1050/13/11/5965

    Sherraden, M. S., Slosar, B., & Sherraden, M. (2002). Innovation in Social Policy: Collaborative Policy Advocacy. Social Work, 47(3), 209-221. doi:10.1093/sw/47.3.209

    Shokrzadeh, S., & Bibeau, E. (2016). Sustainable integration of intermittent renewable energy and electrified light-duty transportation through repurposing batteries of plug-in electric vehicles. Energy, 106, 701-711. doi:https://doi.org/10.1016/j.energy.2016.03.016

    Siksnelyte, I., Zavadskas, E. K., Streimikiene, D., & Sharma, D. (2018). An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues. Energies, 11(10), 2754. Retrieved from https://www.mdpi.com/1996-1073/11/10/2754

    Silvestri, L., Santis, M. D., & Bella, G. (2022, 4-6 March 2022). A Preliminary Techno-Economic and Environmental Performance Analysis of Using Second-Life EV Batteries in an Industrial Application. Paper presented at the 2022 6th International Conference on Green Energy and Applications (ICGEA).

    Song, A., & Zhou, Y. (2023). Advanced cycling ageing-driven circular economy with E-mobility-based energy sharing and lithium battery cascade utilisation in a district community. Journal of Cleaner Production, 415, 137797. doi:https://doi.org/10.1016/j.jclepro.2023.137797

    Song, L., Zhang, K., Liang, T., Han, X., & Zhang, Y. (2020). Intelligent state of health estimation for lithium-ion battery pack based on big data analysis. Journal of Energy Storage, 32, 101836. doi:https://doi.org/10.1016/j.est.2020.101836

    Stahel, W. R. (2016). The circular economy. Nature, 531(7595), 435-438. doi:10.1038/531435a

    Staniškis, J. K. (2012). Sustainable consumption and production: how to make it possible. Clean Technologies and Environmental Policy, 14(6), 1015-1022. doi:10.1007/s10098-012-0535-9

    Sun, J., Liu, R., Ma, Q., Wang, T., & Tang, C. (2020). 2nd Use Battery Energy Storage System Power Reduction Operation. Journal of Electrical Engineering & Technology, 15(1), 293-298. doi:10.1007/s42835-019-00322-7

    Sundstrom, O., & Binding, C. (2012). Flexible Charging Optimization for Electric Vehicles Considering Distribution Grid Constraints. IEEE Transactions on Smart Grid, 3(1), 26-37. doi:10.1109/TSG.2011.2168431

    Taecharungroj, V. (2023). “What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data and Cognitive Computing, 7(1). doi:10.3390/bdcc7010035

    Tagliapietra, S., & Veugelers, R. (2021). Fostering the Industrial Component of the European Green Deal: Key Principles and Policy Options. Intereconomics, 56(6), 305-310. doi:10.1007/s10272-021-1006-5

    Tang, Y., Zhang, Q., Li, Y., Li, H., Pan, X., & McLellan, B. (2019). The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism. Applied Energy, 251, 113313. doi:https://doi.org/10.1016/j.apenergy.2019.113313

    Taylor, S., Peacock, A., Banfill, P., & Shao, L. (2010). Reduction of greenhouse gas emissions from UK hotels in 2030. Building and Environment, 45(6), 1389-1400. doi:https://doi.org/10.1016/j.buildenv.2009.12.001

    Thudumu, S., Branch, P., Jin, J., & Singh, J. (2020). A comprehensive survey of anomaly detection techniques for high dimensional big data. Journal of Big Data, 7(1), 42. doi:10.1186/s40537-020-00320-x

    Tian, G., Yuan, G., Aleksandrov, A., Zhang, T., Li, Z., Fathollahi-Fard, A. M., . . . Assessments. (2022). Recycling of spent Lithium-ion Batteries: A comprehensive review for identification of main challenges and future research trends. Sustainable Energy Technologies, 53, 102447.

    Tojeiro-Rivero, D., & Moreno, R. (2019). Technological cooperation, R&D outsourcing, and innovation performance at the firm level: The role of the regional context. Research Policy, 48(7), 1798-1808. doi:https://doi.org/10.1016/j.respol.2019.04.006

    Tollefson, J. (2008). Charging up the future: a new generation of lithium-ion batteries, coupled with rising oil prices and the need to address climate change, has sparked a global race to electrify transportation. Nature, 456(7221), 436-441.

    Tsai, W. T., & Chou, Y. H. (2005). Overview of environmental impacts, prospects and policies for renewable energy in Taiwan. Renewable and Sustainable Energy Reviews, 9(2), 119-147. doi:https://doi.org/10.1016/j.rser.2004.01.014

    Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159-190. doi:10.1007/s10479-010-0829-4

    Uddin, K., Gough, R., Radcliffe, J., Marco, J., & Jennings, P. (2017). Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom. Applied Energy, 206, 12-21. doi:https://doi.org/10.1016/j.apenergy.2017.08.170

    Van Den Ende, J., Mulder, K., Knot, M., Moors, E., & Vergragt, P. (1998). Traditional and Modern Technology Assessment: Toward a Toolkit. Technological Forecasting and Social Change, 58(1), 5-21. doi:https://doi.org/10.1016/S0040-1625(97)00052-8

    Van Horenbeek, A., & Pintelon, L. (2014). Development of a maintenance performance measurement framework—using the analytic network process (ANP) for maintenance performance indicator selection. Omega, 42(1), 33-46. doi:https://doi.org/10.1016/j.omega.2013.02.006

    Van Tulder, R., Rodrigues, S. B., Mirza, H., & Sexsmith, K. (2021). The UN’s Sustainable Development Goals: Can multinational enterprises lead the Decade of Action? Journal of International Business Policy, 4(1), 1-21. doi:10.1057/s42214-020-00095-1

    van Wee, B., Maat, K., & De Bont, C. (2012). Improving Sustainability in Urban Areas: Discussing the Potential for Transforming Conventional Car-based Travel into Electric Mobility. European Planning Studies, 20(1), 95-110. doi:10.1080/09654313.2011.638497

    von Schomberg, R. (2012). Prospects for technology assessment in a framework of responsible research and innovation. In M. Dusseldorp & R. Beecroft (Eds.), Technikfolgen abschätzen lehren: Bildungspotenziale transdisziplinärer Methoden (pp. 39-61). Wiesbaden: VS Verlag für Sozialwissenschaften.

    Wang, D. (2021). Research on policies of power batteries recycle in china from the perspective of life cycle. Journal of Environmental Engineering and Landscape Management, 29(2), 135-149.

    Wangsupphaphol, A., Chaitusaney, S., & Salem, M. (2023). A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging. Sustainability, 15(7), 5866. Retrieved from https://www.mdpi.com/2071-1050/15/7/5866

    Wicki, S., & Hansen, E. G. (2019). Green technology innovation: Anatomy of exploration processes from a learning perspective. Business Strategy and the Environment, 28(6), 970-988.

    Wind, Y., & Saaty, T. L. (1980). Marketing Applications of the Analytic Hierarchy Process. Management Science, 26(7), 641-658. Retrieved from http://www.jstor.org/stable/2630699

    Wiser, R. H., & Pickle, S. J. (1998). Financing investments in renewable energy : the impacts of policy design. Renewable and Sustainable Energy Reviews, 2(4), 361-386. doi:https://doi.org/10.1016/S1364-0321(98)00007-0

    Wralsen, B., & Faessler, B. (2022). Multiple Scenario Analysis of Battery Energy Storage System Investment: Measuring Economic and Circular Viability. Batteries, 8(2). doi:10.3390/batteries8020007

    Wu, W., Lin, B., Xie, C., Elliott, R. J., & Radcliffe, J. (2020). Does energy storage provide a profitable second life for electric vehicle batteries? Energy Economics, 92, 105010.

    Xu, C., Behrens, P., Gasper, P., Smith, K., Hu, M., Tukker, A., & Steubing, B. (2023). Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. Nature Communications, 14(1), 119. doi:10.1038/s41467-022-35393-0

    Yadav, A., Pal, N., Patra, J., & Yadav, M. (2020). Strategic planning and challenges to the deployment of renewable energy technologies in the world scenario: its impact on global sustainable development. Environment, Development and Sustainability, 22(1), 297-315. doi:10.1007/s10668-018-0202-3

    Yang, H., Yang, S., & Liu, Y. (2020). Design of Internal Resistance Detection System for Retired Lithium-ion Batteries. IOP Conference Series: Earth and Environmental Science, 619(1), 012021. doi:10.1088/1755-1315/619/1/012021

    Yang, J. L., & Tzeng, G.-H. (2011). An integrated MCDM technique combined with DEMATEL for a novel cluster-weighted with ANP method. Expert Systems with Applications, 38(3), 1417-1424. doi:https://doi.org/10.1016/j.eswa.2010.07.048

    Yang, L., Deuse, J., & Jiang, P. (2013). Multiple-attribute decision-making approach for an energy-efficient facility layout design. The International Journal of Advanced Manufacturing Technology, 66(5), 795-807. doi:10.1007/s00170-012-4367-x

    Yang, Y., Okonkwo, E. G., Huang, G., Xu, S., Sun, W., & He, Y. (2021). On the sustainability of lithium ion battery industry–A review and perspective. Energy Storage Materials, 36, 186-212.

    Yong, P., Zhang, N., Hou, Q., Liu, Y., Teng, F., Ci, S., & Kang, C. (2021). Evaluating the Dispatchable Capacity of Base Station Backup Batteries in Distribution Networks. IEEE Transactions on Smart Grid, 12(5), 3966-3979. doi:10.1109/TSG.2021.3074754

    Yu, W., Zheng, Y., & Zhang, Y. (2022). Carbon Emission Reduction by Echelon Utilization of Retired Vehicle Power Batteries in Energy Storage Power Stations. World Electric Vehicle Journal, 13(8). doi:10.3390/wevj13080144

    Yüksel, I. (2012). Developing a multi-criteria decision making model for PESTEL analysis. International Journal of Business and Management, 7(24), 52.

    Zafar, B., & Ben Slama, S. (2022). Energy Internet Opportunities in Distributed Peer-to-Peer Energy Trading Reveal by Blockchain for Future Smart Grid 2.0. Sensors, 22(21), 8397. Retrieved from https://www.mdpi.com/1424-8220/22/21/8397

    Zahra, S. A., & Bogner, W. C. (2000). Technology strategy and software new ventures' performance: Exploring the moderating effect of the competitive environment. Journal of Business Venturing, 15(2), 135-173. doi:https://doi.org/10.1016/S0883-9026(98)00009-3

    Zakeri, B., Cross, S., Dodds, P. E., & Gissey, G. C. (2021). Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage. Applied Energy, 290, 116697. doi:https://doi.org/10.1016/j.apenergy.2021.116697

    Zhan, S., Hou, P., Enevoldsen, P., Yang, G., Zhu, J., Eichman, J., & Jacobson, M. Z. (2020). Co-optimized trading of hybrid wind power plant with retired EV batteries in energy and reserve markets under uncertainties. International Journal of Electrical Power & Energy Systems, 117, 105631. doi:https://doi.org/10.1016/j.ijepes.2019.105631

    Zhang, C., Li, H., & Tian, Y.-X. (2023). Manufacturer's carbon abatement strategy and selection of spent power battery collecting mode based on echelon utilization and cap-and-trade policy. Computers & Industrial Engineering, 177, 109079. doi:https://doi.org/10.1016/j.cie.2023.109079

    Zhang, X., Bai, X., & Shang, J. (2018). Is subsidized electric vehicles adoption sustainable: Consumers’ perceptions and motivation toward incentive policies, environmental benefits, and risks. Journal of Cleaner Production, 192, 71-79. doi:https://doi.org/10.1016/j.jclepro.2018.04.252

    Zhang, X., Li, L., Fan, E., Xue, Q., Bian, Y., Wu, F., & Chen, R. (2018). Toward sustainable and systematic recycling of spent rechargeable batteries. Chemical Society Reviews, 47(19), 7239-7302.

    Zhang, Z., Li, Y., Gu, P., Huang, P., Duan, B., & Zhang, C. (2022, 25-27 July 2022). Thermal behavior analysis of retired batteries based on thermo-electric coupling model. Paper presented at the 2022 41st Chinese Control Conference (CCC).

    Zhao, Y., Pohl, O., Bhatt, A. I., Collis, G. E., Mahon, P. J., Rüther, T., & Hollenkamp, A. F. (2021). A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustainable Chemistry, 2(1), 167-205. doi:10.3390/suschem2010011

    Zhou, C., Sang, B., Feng, X., Wang, D., Yu, H., & Li, Y. (2023, 23-26 March 2023). Research on Application Technology of Mobile Energy Storage System for Multi-dimensional Scenarios. Paper presented at the 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES).

    Zhou, L., Garg, A., Zheng, J., Gao, L., & Oh, K. Y. (2021). Battery pack recycling challenges for the year 2030: Recommended solutions based on intelligent robotics for safe and efficient disassembly, residual energy detection, and secondary utilization. Energy Storage, 3(3), e190.

    Zhukovskiy, Y. L., Batueva, D. E., Buldysko, A. D., Gil, B., & Starshaia, V. V. (2021). Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios. Energies, 14(17). doi:10.3390/en14175268

    Zou, R., & Liu, Q. (2021). Current situation and Countermeasures of power battery recycling industry in China. IOP Conference Series: Earth and Environmental Science, 702(1), 012013. doi:10.1088/1755-1315/702/1/012013

    下載圖示
    QR CODE