簡易檢索 / 詳目顯示

研究生: 洪君儀
Hung, Giun-Yi
論文名稱: 以斑馬魚為模式調查環境酸化與鉑類化療藥物對毛細胞與離子細胞的影響
Using Zebrafish Model to Investigate the Effects of Environmental Acidification and a Platinum-Based Chemotherapeutic Drug on Hair Cells and Ionocytes
指導教授: 鄭劍廷
Chien, Chiang-Ting
林豊益
Lin, Li-Yih
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 環境酸化順鉑毛細胞離子細胞機械傳導通道藥物汙染物掃描式離子選擇電極斑馬魚
英文關鍵詞: Environmental acidification, Cisplatin, Hair cell, Ionocyte, Mechanotransducer channel, Pharmaceutical contaminants, Scanning ion-selective electrode technique, Zebrafish
DOI URL: http://doi.org/10.6345/DIS.NTNU.SLS.002.2019.D01
論文種類: 學術論文
相關次數: 點閱:171下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 淡水生態系統的酸化已被認為是全球性的環境問題,並導致魚類行為的變化。然而,酸性環境是否造成淡水魚側線系統的功能改變仍然是未知的。此外,許多研究揭露藥物汙染水環境的事實,其中包括抗癌化療藥物。然而這些藥物造成的環境作用、環境影響的程度與廣度鮮為人知。本研究目的在於檢視斑馬魚胚胎暴露於酸性或鹼性淡水時,是否改變了神經丘毛細胞的表達和功能。並藉由決定鉑類化療藥物(順鉑)對於表皮離子細胞與毛細胞產生影響之最小濃度,了解順鉑之亞致死效應,以應用於鉑類藥物造成水環境影響之早期風險評估。將斑馬魚胚胎暴露於不同的酸鹼pH值環境中,分析長期暴露(受精後0~96小時)與短期暴露(受精後48~96小時)對胚胎形態與側線毛細胞功能之影響。另外,將斑馬魚胚胎受精後長期暴露於不同濃度的順鉑後,分析胚胎形態、存活率、體長、及魚體的離子(鈉、氯、鈣)與鉑含量。功能分析方面,利用掃描式離子選擇電極,分析側線毛細胞功能(機械傳導通道鈣離子流)與皮膚離子細胞排酸功能。結果顯示,長期暴露於pH5條件下,側線毛細胞數量與功能皆下降。短期暴露於pH5條件下,僅毛細胞功能下降,然而毛細胞數目不變。進一步利用morpholino oligonucleotides進行基因減弱,降低H+-ATPase與 gcm2 表現,使得調節酸鹼平衡機制受損後,發現胚胎毛細胞數量與功能皆下降。此外,胚胎長期暴露於濃度由低至高的順鉑中,毛細胞功能最先受損(濃度1 µM)、隨後是毛細胞數與魚體氯離子含量下降(濃度10 µM)、離子細胞排酸能力下降及魚體鈉與鈣離子含量下降(濃度50 µM)、體長與離子細胞密度下降(100 µM)、最後是存活率下降(濃度500 µM)。研究結果顯示酸性環境會導致神經丘毛細胞功能受損。對於順鉑引起之毒性,毛細胞明顯比離子細胞更敏感。本研究利用掃描式離子選擇電極偵測毛細胞與離子細胞功能之改變,決定順鉑最低影響濃度,此法有高達500倍相較於偵測存活率變化之敏感度,未來可應用於偵測鉑類藥物對於水環境造成之早期風險評估。

    Acidification of freshwater ecosystems has been recognized as a global environmental problem and causes changes in fish behavior. However, whether environmental acidification causes functional alterations in the freshwater fish lateral line system is still unknown. Moreover, many studies demonstrated pharmaceutical contaminants in aquatic systems, including antineoplastic drugs. Yet, the environmental behaviors, effects, and fates of these drugs are little known. The aims of this study were to investigate if exposure to acidic or basic freshwater altered the expression and function of neuromast hair cells in zebrafish embryos, and to assess the early aquatic risk of a platinum compound (cisplatin) by revealing the sublethal effects of cisplatin on skin ionocytes and hair cells. Zebrafish embryos were incubated in different pH [at 0~96 h post-fertilization (hpf), defined as long exposure; and 48~96 hpf, short exposure], and different concentrations of cisplatin (at 0~96 hpf). The survival rate, body length, and whole-body ion (Na+, Cl-, and Ca2+) and platinum contents were determined. Using a scanning ion-selective electrode technique, the function of hair cells [mechanotransducer (MET)-channel-mediated Ca2+ influx at the stereocilia of hair cells] and ionocyte ([H+] gradients) was measured in intact zebrafish larvae. The result shows that the cell number and function of neuromast hair cells are reduced after 0-96 hpf pH5 exposure. Only MET channel-mediated Ca2+ influx is decreased in the larvae which exposed to 48-96 hpf pH5. Gene knockdown by using morpholino oligonucleotides (MO) decreased H+-ATPase and gcm2 expression and impaired systemic acid-base balance in zebrafish larvae. The cell number and function of neuromast hair cells are significantly decreased in both MO knockdown larvae. The effects of cisplatin on zebrafish embryos were demonstrated as first impairing hair cell function (at 1 µM of cisplatin), the hair cell number, and body ion content of Cl- (at 10 µM of cisplatin), then decreasing ionocyte acid secretion and overall body ion contents of Na+ and Ca2+ (at 50 µM of cisplatin). The body length and ionocyte density decreased at 100 µM of cisplatin, and survival decreased at 500 µM of cisplatin. In conclusion, neuromast hair cell is sensitive to the acidic environment. Hair cells are significantly more susceptible to cisplatin toxicity than ionocytes. This study using zebrafish hair cells/ionocytes to detect cisplatin toxicity, demonstrating a 500-fold greater sensitivity than by detecting changes in survival, for early aquatic risk assessments of platinum-based chemotherapeutic contaminants.

    中文摘要 1 ABSTRACT 3 1 INTRODUCTION 5 1.1 Evidence of environmental water acidification and influence on fish 5 1.2 The strength of using the zebrafish model in toxicological research 6 1.3 Potential damage of fish lateral line/hair cells in an acidic environment 7 1.4 The strength of using SIET in detecting ion flux in cells 8 1.5 Evidence of environmental pharmaceutical contaminants 8 1.6 Cisplatin: clinical use and toxicity 9 1.7 zebrafish ionocytes 10 1.8 zebrafish lateral line system/hair cells and mechanoelectrical transducer (MET) channel 12 2 AIMS OF THE STUDY 14 3 MATERIALS AND METHODS 15 3.1 Zebrafish 15 3.2 Exposures to different pH environments 15 3.3 Microinjection of antisense morpholino oligonucleotides (MOs) 16 3.4 SIET 16 3.5 Measurement of [H+] gradients over yolk sac and Ca2+ flux at L1 neuromasts by SIET 18 3.6 Localization of ionocytes by whole-mount immunocytochemical technique 20 3.7 Labeling and observing hair cells 21 3.8 Measurement of whole-body Na+/Cl-/Ca2+ contents 21 3.9 Determination of whole-body Pt contents 22 3.10 Drug preparation and treatment 23 3.11 Statistical analysis 23 4 RESULTS 25 4.1 Effect of various pH on zebrafish embryos for 0-96 hpf exposures 25 4.2 Effect of pH5, pH7, pH9 exposures for 0-96 hpf on hair cell number and function of neuromasts 25 4.3 Effect of pH5, pH7, pH9 exposures for 48-96 hpf on hair cell number and function of neuromast 26 4.4 Effect of atp6v1a and gcm2 MO knockdown on the expression and function of neuromast hair cells 26 4.5 Effect of cisplatin on the survival rate, body length, and ionic contents of zebrafish embryos 27 4.6 Effect of cisplatin on acid secretion and ionocyte density in zebrafish embryos 28 4.7 Effect of cisplatin on the hair cell number and function in zebrafish embryos 29 5 DISCUSSION 30 5.1 Influence of environmental acidic pH on zebrafish neuromast hair cells 30 5.2 Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos 33 6 CONCLUSION 38 7 REFERENCES 39 8 TABLE 56 9 FIGURES 57

    Achkar, I.W., Abdulrahman, N., Al-Sulaiti, H., Joseph, J.M., Uddin, S., Mraiche, F., 2018. Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med 16, 96.
    Almanza, A., Mercado, F., Vega, R., Soto, E., 2008. Extracellular pH modulates the voltage-dependent Ca2+ current and low threshold K+ current in hair cells. Neurochem Res 33, 1435-1441.
    Andrade, T.S., Henriques, J.F., Almeida, A.R., Soares, A.M., Scholz, S., Domingues, I., 2017. Zebrafish embryo tolerance to environmental stress factors-Concentration-dose response analysis of oxygen limitation, pH, and UV-light irradiation. Environ Toxicol Chem 36, 682-690.
    Bleckmann, H., 1994. Reception of hydrodynamic stimuli in aquatic and semiaquatic animals, in: E., R. (Ed.), Progress in zoology. Gustav Fischer-Verlag, pp. 1-115.
    Bleckmann, H., Zelick, R., 2009. Lateral line system of fish. Integr Zool 4, 13-25.
    Buckiova, D., Syka, J., 2009. Calbindin and S100 protein expression in the developing inner ear in mice. J Comp Neurol 513, 469-482.
    Chang, W.J., Horng, J.L., Yan, J.J., Hsiao, C.D., Hwang, P.P., 2009. The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296, R1192-1201.
    Checkley, D.M., Jr., Dickson, A.G., Takahashi, M., Radich, J.A., Eisenkolb, N., Asch, R., 2009. Elevated CO2 enhances otolith growth in young fish. Science 324, 1683.
    Chen, X., Wu, Y., Dong, H., Zhang, C.Y., Zhang, Y., 2013. Platinum-based agents for individualized cancer treatment. Curr Mol Med 13, 1603-1612.
    Coffin, A.B., Reinhart, K.E., Owens, K.N., Raible, D.W., Rubel, E.W., 2009. Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hear Res 253, 42-51.
    Connor, T.H., McDiarmid, M.A., 2006. Preventing occupational exposures to antineoplastic drugs in health care settings. CA Cancer J Clin 56, 354-365.
    Corns, L.F., Johnson, S.L., Kros, C.J., Marcotti, W., 2016. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells. J Neurosci 36, 336-349.
    Dilruba, S., Kalayda, G.V., 2016. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77, 1103-1124.
    Dixson, D.L., Munday, P.L., Jones, G.P., 2010. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13, 68-75.
    Eaton, A.D.C., L. S.; Greenberg, A. E.; Franson, M. A. H., 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC.
    El‐Fiky, N.K., 2002. The influence of water pH on the embryonic development of grass carp, Ctenopharyngodon idella. Egypt J Aquat Biol Fish 6, 233-261.
    Eve, A.M., Place, E.S., Smith, J.C., 2017. Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes. PLoS One 12, e0172227.
    Fang, T.H., Nan, F.H., Chin, T.S., Feng, H.M., 2012. The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Mar pollut bull 64, 1435-1444.
    Ferrando-Climent, L., Rodriguez-Mozaz, S., Barcelo, D., 2014. Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. Environ Pollut 193, 216-223.
    Ferrari, M.C.O., McCormick, M.I., Munday, P.L., Meekan, M.G., Dixson, D.L., Lönnstedt, O., Chivers, D.P., 2012. Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26, 553-558.
    Fettiplace, R., 2009. Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch 458, 1115-1123.
    Fettiplace, R., 2017. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 7, 1197-1227.
    Froehlicher, M., Liedtke, A., Groh, K.J., Neuhauss, S.C., Segner, H., Eggen, R.I., 2009. Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95, 307-319.
    Gale, J.E., Marcotti, W., Kennedy, H.J., Kros, C.J., Richardson, G.P., 2001. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21, 7013-7025.
    Galloway, J.N., 1995. Acid deposition: perspectives in time and space. Water Air Soil Pollut 85, 15-24.
    Garber, S.S., Messerli, M.A., Hubert, M., Lewis, R., Hammar, K., Indyk, E., Smith, P.J., 2005. Monitoring Cl- movement in single cells exposed to hypotonic solution. J Membr Biol 203, 101-110.
    Germana, A., Abbate, F., Gonzalez-Martinez, T., del Valle, M.E., de Carlos, F., Germana, G., Vega, J.A., 2004. S100 protein is a useful and specific marker for hair cells of the lateral line system in postembryonic zebrafish. Neurosci Lett 365, 186-189.
    Ghysen, A., Dambly-Chaudiere, C., 2004. Development of the zebrafish lateral line. Current Opin Neurobiol 14, 67-73.
    Golombieski, J.I., Koakoski, G., Becker, A.J., Almeida, A.P., Toni, C., Finamor, I.A., Pavanato, M.A., de Almeida, T.M., Baldisserotto, B., 2013. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels. Fish Physiol Biochem 39, 837-849.
    Gompel, N., Dambly-Chaudiere, C., Ghysen, A., 2001. Neuronal differences prefigure somatotopy in the zebrafish lateral line. Development 128, 387-393.
    Guh, Y.J., Lin, C.H., Hwang, P.P., 2015. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI J 14, 627-659.
    Hailey, D.W., Roberts, B., Owens, K.N., Stewart, A.K., Linbo, T., Pujol, R., Alper, S.L., Rubel, E.W., Raible, D.W., 2012. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone. PLoS Genet 8, e1002971.
    Hall, A.M., Bass, P., Unwin, R.J., 2014. Drug-induced renal Fanconi syndrome. QJM 107, 261-269.
    Hamilton, T.J., Holcombe, A., Tresguerres, M., 2014. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc Biol Sci 281, 20132509.
    Hann, S., Koellensperger, G., Stefánka, Z., Stingeder, G., Fürhacker, M., Buchberger, W., Mader, R., 2003. Application of HPLC-ICP-MS to speciation of cisplatin and its degradation products in water containing different chloride concentrations and in human urine. J Anal At Spectrom 18, 1391-1395.
    Haque, S.K., Ariceta, G., Batlle, D., 2012. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 27, 4273-4287.
    Helmer, R., Hespanhol, I., United Nations Environment Programme., Water Supply and Sanitation Collaborative Council., World Health Organization, 1997. Water pollution control : a guide to the use of water quality management principles, 1st. ed. E & FN Spon, London ; New York.
    Hill, J.K., Brett, C.L., Chyou, A., Kallay, L.M., Sakaguchi, M., Rao, R., Gillespie, P.G., 2006. Vestibular hair bundles control pH with (Na+, K+)/H+ exchangers NHE6 and NHE9. J Neurosci 26, 9944-9955.
    Hirose, Y., Simon, J.A., Ou, H.C., 2011. Hair cell toxicity in anti-cancer drugs: evaluating an anti-cancer drug library for independent and synergistic toxic effects on hair cells using the zebrafish lateral line. J Assoc Res Otolaryngol 12, 719-728.
    Horng, J.L., Chao, P.L., Chen, P.Y., Shih, T.H., Lin, L.Y., 2015. Aquaporin 1 Is Involved in Acid Secretion by Ionocytes of Zebrafish Embryos through Facilitating CO2 Transport. PLoS One 10, e0136440.
    Horng, J.L., Lin, L.Y., Huang, C.J., Katoh, F., Kaneko, T., Hwang, P.P., 2007. Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292, R2068-2076.
    Horng, J.L., Hwang, P.P., Shih, T.H., Wen, Z.H., Lin, C.S., Lin, L.Y., 2009a. Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am J Physiol Cell Physiol 297, C845-854.
    Horng, J.L., Lin, L.Y., Hwang, P.P., 2009b. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 296, C682-692.
    Horng, J.L., Yu, L.L., Liu, S.T., Chen, P.Y., Lin, L.Y., 2017. Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Sci Rep 7, 16215.
    Hwang, P.P., 2009. Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212, 1745-1752.
    Hwang, P.P., Chou, M.Y., 2013. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465, 1233-1247.
    Hwang, P.P., Lee, T.H., Lin, L.Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301, R28-47.
    Ikeda, K., Saito, Y., Nishiyama, A., Takasaka, T., 1992. Intracellular pH regulation in isolated cochlear outer hair cells of the guinea-pig. J Physiol 447, 627-648.
    Isidori, M., Lavorgna, M., Russo, C., Kundi, M., Zegura, B., Novak, M., Filipic, M., Misik, M., Knasmueller, S., de Alda, M.L., Barcelo, D., Zonja, B., Cesen, M., Scancar, J., Kosjek, T., Heath, E., 2016. Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environ Pollut 219, 275-287.
    Katoh, F., Hyodo, S., Kaneko, T., 2003. Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. J Exp Biol 206, 793-803.
    Kazmierczak, P., Muller, U., 2012. Sensing sound: molecules that orchestrate mechanotransduction by hair cells. Trends Neurosci 35, 220-229.
    Kim, M.J., Choi, J., Kim, N., Han, G.C., 2014. Behavioral changes of zebrafish according to cisplatin-induced toxicity of the balance system. Hum Exp Toxicol 33, 1167-1175.
    Klaminder, J., Brodin, T., Sundelin, A., Anderson, N.J., Fahlman, J., Jonsson, M., Fick, J., 2015. Long-Term Persistence of an Anxiolytic Drug (Oxazepam) in a Large Freshwater Lake. Environ Sci Technol 49, 10406-10412.
    Klaminder, J., Jonsson, M., Fick, J., Sundelin, A., Brodin, T., 2014. The conceptual imperfection of aquatic risk assessment tests: highlighting the need for tests designed to detect therapeutic effects of pharmaceutical contaminants. Environ Res Lett 9, 084003.
    Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36, 1202-1211.
    Kwong, R.W., Kumai, Y., Perry, S.F., 2013. Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water. J Comp Physiol B 183, 203-213.
    Kwong, R.W., Kumai, Y., Perry, S.F., 2014. The physiology of fish at low pH: the zebrafish as a model system. J Exp Biol 217, 651-662.
    Lagesson, A., Brodin, T., Fahlman, J., Fick, J., Jonsson, M., Persson, J., Bystrom, P., Klaminder, J., 2018. No evidence of increased growth or mortality in fish exposed to oxazepam in semi-natural ecosystems. Sci Total Environ 615, 608-614.
    Lang, F., Vallon, V., Knipper, M., Wangemann, P., 2007. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 293, C1187-1208.
    Lee, S.S., Paspalof, A.M., Snow, D.D., Richmond, E.K., Rosi-Marshall, E.J., Kelly, J.J., 2016. Occurrence and Potential Biological Effects of Amphetamine on Stream Communities. Environ Sci Technol 50, 9727-9735.
    Lenz, K., Hann, S., Koellensperger, G., Stefanka, Z., Stingeder, G., Weissenbacher, N., Mahnik, S.N., Fuerhacker, M., 2005. Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge. Sci Total Environ 345, 141-152.
    Lenz, K., Koellensperger, G., Hann, S., Weissenbacher, N., Mahnik, S.N., Fuerhacker, M., 2007. Fate of cancerostatic platinum compounds in biological wastewater treatment of hospital effluents. Chemosphere 69, 1765-1774.
    Lewis, L., Kwong, R.W.M., 2018. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 19.
    Lin, A.Y., Lin, C.F., Tsai, Y.T., Lin, H.H., Chen, J., Wang, X.H., Yu, T.H., 2010. Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment processes in Taiwan. Water Sci Technol 62, 2450-2458.
    Lin, A.Y., Lin, Y.C., Lee, W.N., 2014. Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments. Environ Pollut 187, 170-181.
    Lin, A.Y., Tsai, Y.T., 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407, 3793-3802.
    Lin, A.Y., Yu, T.H., Lateef, S.K., 2009. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. J Hazard Mater 167, 1163-1169.
    Lin, A.Y., Yu, T.H., Lin, C.F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74, 131-141.
    Lin, L.Y., Horng, J.L., Kunkel, J.G., Hwang, P.P., 2006. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371-378.
    Lin, L.Y., Pang, W., Chuang, W.M., Hung, G.Y., Lin, Y.H., Horng, J.L., 2013. Extracellular Ca(2+) and Mg(2+) modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca(2+) entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol 305, C1060-1068.
    Lin, L.Y., Yeh, Y.H., Hung, G.Y., Lin, C.H., Hwang, P.P., Horng, J.L., 2018. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca(2+) Influx in Hair Cells of Zebrafish Larvae. Front Physiol 9, 649.
    Lin, Y.H., Hung, G.Y., Wu, L.C., Chen, S.W., Lin, L.Y., Horng, J.L., 2015. Anion exchanger 1b in stereocilia is required for the functioning of mechanotransducer channels in lateral-line hair cells of zebrafish. PLoS One 10, e0117041.
    Liu, S.T., Horng, J.L., Chen, P.Y., Hwang, P.P., Lin, L.Y., 2016. Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: new insights into the salt-secreting mechanism. Sci Rep 6, 31433.
    Liu, S.T., Tsung, L., Horng, J.L., Lin, L.Y., 2013. Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. Am J Physiol Regul Integr Comp Physiol 305, R242-251.
    McClure, M.M., McIntyre, P.B., McCune, A.R., 2006. Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J. Fish Biol. 69, 553-570.
    McWilliams, P.G., 1980. Acclimation to an acid medium in the brown trout Salmo trutta. J Exp Biol 88, 269-280.
    Meijster, T., Fransman, W., Veldhof, R., Kromhout, H., 2006. Exposure to antineoplastic drugs outside the hospital environment. Ann Occup Hyg 50, 657-664.
    Menz, F.C., Seip, H.M., 2004. Acid rain in Europe and the United States: an update. Environ Sci Policy 7, 253-265.
    Meyers, J.R., MacDonald, R.B., Duggan, A., Lenzi, D., Standaert, D.G., Corwin, J.T., Corey, D.P., 2003. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci 23, 4054-4065.
    Milligan, L., Wood, C.M., 1982. Disturbances in haematology, fluid volume distribution and circulatory function associated with low environmental pH in the rainbow trout, Salmo gairdneri. J. Exp. Biol 99, 397-415.
    Mogdans, J., Bleckmann, H., 2012. Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system. Biol Cybern 106, 627-642.
    Munday, P.L., Cheal, A.J., Dixson, D.L., Rummer, J.L., Fabricius, K.E., 2014. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Change 4, 487-492.
    Munday, P.L., Cheal, A.J., Dixson, D.L., Rummer, J.L., Fabricius, K.E., 2015. Climate change ecology: Salmon behaving badly. Nat. Clim. Change 5, 915-916.
    Munday, P.L., Dixson, D.L., Donelson, J.M., Jones, G.P., Pratchett, M.S., Devitsina, G.V., Doving, K.B., 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci U S A 106, 1848-1852.
    Munday, P.L., Dixson, D.L., McCormick, M.I., Meekan, M., Ferrari, M.C., Chivers, D.P., 2010. Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci U S A 107, 12930-12934.
    Nilsson, G.E., Dixson, D.L., Domenici, P., Mccormick, M.I., Sørensen, C., Watson, S.-A., Munday, P., 2012. Near-future CO2 levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change 2, 201-204.
    Norgett, E.E., Golder, Z.J., Lorente-Canovas, B., Ingham, N., Steel, K.P., Karet Frankl, F.E., 2012. Atp6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype. Proc Natl Acad Sci U S A 109, 13775-13780.
    Nunez, V.A., Sarrazin, A.F., Cubedo, N., Allende, M.L., Dambly-Chaudiere, C., Ghysen, A., 2009. Postembryonic development of the posterior lateral line in the zebrafish. Evol Dev 11, 391-404.
    Ou, H.C., Raible, D.W., Rubel, E.W., 2007. Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233, 46-53.
    Ou, H.C., Santos, F., Raible, D.W., Simon, J.A., Rubel, E.W., 2010. Drug screening for hearing loss: using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discov Today 15, 265-271.
    Ou, M., Hamilton, T.J., Eom, J., Lyall, E.M., Gallup, J., Jiang, A., Lee, J., Close, D.A., Yun, S.-S., Brauner, C.J., 2015. Responses of pink salmon to CO2-induced aquatic acidification. Nature Climate Change 5, 950-955.
    Pabla, N., Dong, Z., 2008. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73, 994-1007.
    Packer, R.K., Dunson, W.A., 1972. Anoxia and sodium loss associated with the death of brook trout at low pH. Comp Biochem Physiol A Comp Physiol 41, 17-26.
    Pomati, F., Castiglioni, S., Zuccato, E., Fanelli, R., Vigetti, D., Rossetti, C., Calamari, D., 2006. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ Sci Technol 40, 2442-2447.
    Psenner, R., 1994. Environmental impacts on freshwaters: acidification as a global problem. Sci. Total Environ 143, 53-61.
    Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., Stainier, D.Y., 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233.
    Rossi, T., Nagelkerken, I., Pistevos, J.C., Connell, S.D., 2016. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol Lett 12, 20150937.
    Schindler, D.W., 1988. Effects of Acid rain on freshwater ecosystems. Science 239, 149-157.
    Shen, W.P., Horng, J.L., Lin, L.Y., 2011. Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Am J Physiol Regul Integr Comp Physiol 300, R858-868.
    Sheth, S., Mukherjea, D., Rybak, L.P., Ramkumar, V., 2017. Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection. Front Cell Neurosci 11, 338.
    Shih, T.H., Horng, J.L., Hwang, P.P., Lin, L.Y., 2008. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295, C1625-1632.
    Shih, T.H., Horng, J.L., Liu, S.T., Hwang, P.P., Lin, L.Y., 2012. Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol 302, R84-93.
    Shih, T.H., Horng, J.L., Lai, Y.T., Lin, L.Y., 2013. Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol 304, R1130-1138.
    Shin, Y.S., Song, S.J., Kang, S., Hwang, H.S., Jung, Y.S., Kim, C.H., 2014. Novel synthetic protective compound, KR-22335, against cisplatin-induced auditory cell death. J Appl Toxicol 34, 191-204.
    Simpson, S.D., Munday, P.L., Wittenrich, M.L., Manassa, R., Dixson, D.L., Gagliano, M., Yan, H.Y., 2011. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7, 917-920.
    Smith, P.J., Hammar, K., Porterfield, D.M., Sanger, R.H., Trimarchi, J.R., 1999. Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech 46, 398-417.
    Stawicki, T.M., Owens, K.N., Linbo, T., Reinhart, K.E., Rubel, E.W., Raible, D.W., 2014. The zebrafish merovingian mutant reveals a role for pH regulation in hair cell toxicity and function. Dis Model Mech 7, 847-856.
    Stengel, D., Zindler, F., Braunbeck, T., 2017. An optimized method to assess ototoxic effects in the lateral line of zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 193, 18-29.
    Suli, A., Watson, G.M., Rubel, E.W., Raible, D.W., 2012. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One 7, e29727.
    Tao, F., Feng, Z., 2000. Terrestrial ecosystem sensitivity to acid deposition in South China. Water Air Soil Pollut 118, 231-243.
    Thomas, A.J., Hailey, D.W., Stawicki, T.M., Wu, P., Coffin, A.B., Rubel, E.W., Raible, D.W., Simon, J.A., Ou, H.C., 2013. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci 33, 4405-4414.
    Turner, A., Mascorda, L., 2015. Particle-water interactions of platinum-based anticancer drugs in river water and estuarine water. Chemosphere 119, 415-422.
    Vlasits, A.L., Simon, J.A., Raible, D.W., Rubel, E.W., Owens, K.N., 2012. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hear Res 294, 153-165.
    Vermorken, J.B., van der Vijgh, W.J., Klein, I., Hart, A.A., Gall, H.E., Pinedo, H.M., 1984. Pharmacokinetics of free and total platinum species after short-term infusion of cisplatin. Cancer Treat Rep 68, 505-513.
    Vyas, N., Turner, A., Sewell, G., 2014. Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters. Sci Total Environ 493, 324-329.
    Wangemann, P., Nakaya, K., Wu, T., Maganti, R.J., Itza, E.M., Sanneman, J.D., Harbidge, D.G., Billings, S., Marcus, D.C., 2007. Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292, F1345-1353.
    Wood, C.M., 1989. The physiological problems of fish in acid waters., in: Morris R., B.D.J.A., Taylor E. W., Brown J. A. (Ed.), Acid Toxicity and Aquatic Animals. Cambridge: Cambridge University Press, pp. 125-152.
    Wright, R.F., Larssen, T., Camarero, L., Cosby, B.J., Ferrier, R.C., Helliwell, R., Forsius, M., Jenkins, A., Kopacek, J., Majer, V., Moldan, F., Posch, M., Rogora, M., Schopp, W., 2005. Recovery of acidified European surface waters. Environ Sci Technol 39, 64A-72A.
    Wu, S.C., Horng, J.L., Liu, S.T., Hwang, P.P., Wen, Z.H., Lin, C.S., Lin, L.Y., 2010. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298, C237-250.
    Yan, J.J., Chou, M.Y., Kaneko, T., Hwang, P.P., 2007. Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293, C1814-1823.
    Yang, L., Ho, N.Y., Alshut, R., Legradi, J., Weiss, C., Reischl, M., Mikut, R., Liebel, U., Muller, F., Strahle, U., 2009. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28, 245-253.
    Yashima, T., Noguchi, Y., Kawashima, Y., Rai, T., Ito, T., Kitamura, K., 2010. Novel ATP6V1B1 mutations in distal renal tubular acidosis and hearing loss. Acta Otolaryngol 130, 1002-1008.

    下載圖示
    QR CODE