簡易檢索 / 詳目顯示

研究生: 張弼程
論文名稱:
Zassenhaus Conjecture for Some Metabelian Groups
指導教授: 劉家新
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 27
英文關鍵詞: integral group rings, Zassenhaus Conjecture, torsion units
論文種類: 學術論文
相關次數: 點閱:148下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1960 年代中期, 關於 integral group rings 中的 torsion units 及 finite subgroups,Zassenhaus 提出了三個猜想。
    其中最強的一個猜想(ZC-3)如此敘述:
    如果 H 是 V(ZG) 中的有限子群, 則 H 會和 G 裡的一個子群在 QG 中共軛。
    雖然此一猜想已有反例,但依然具有研究價值。在此篇論文中我們將證明:
    若一有限群G包含一個 normal abelian Sylow p-subgroup A,並且G/ A 是abelian,則G 滿足(ZC-3)。

    In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings.
    The strongest one (ZC-3) states:
    If H is a finite subgroup of V(ZG), then H is conjugate to a subgroup of G in QG.
    In this thesis, we prove that if G contains a normal abelian Sylow p-subgroup A with G/ A abelian, then (ZC-3) holds for G.

    Contents 1 Introduction …………………………………………………….1 2 p'-Automorphisms of Abelian p-Groups ……………………3 3 Torsion Units and Finite Subgroups in Integral Group Rings............................................. … 6 4 Criteria for (ZC3) ………………………………………………8 5 Two Inductive Arguments …………………………………….12 6 Some Representation Theory ………………………………….15 7 Indecomposable Bimodules…………………………………… 16 8 Applications of Weiss p-permutation Module Result…20 9 Main Result…………………………………………………… 25

    [CR90] Charles W. Curtis and Irving Reiner. Methods of representation theory. Vol. I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1990. With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication.
    [DJ96] Michael A. Dokuchaev and Stanley O. Juriaans. Finite subgroups in integral group rings. Canad. J. Math., 48(6):1170-1179, 1996.
    [DJPM97] Michael A. Dokuchaev, Stanley O. Juriaans, and Cesar Polcino Milies. Integral group rings of Frobenius groups and the conjectures of H. J. Zassenhaus. Comm. Algebra, 25(7):2311-2325, 1997.
    [Gor68] Daniel Gorenstein. Finite groups. Harper & Row Publishers, New York, 1968.
    [HB82] Bertram Huppert and Norman Blackburn. Finite groups. II, volume 242 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1982. AMD, 44.
    [Her02] Martin Hertweck. Integral group ring automorphisms withoutZassenhaus factorization. Illinois J. Math., 46(1):233-245, 2002.
    [Her06] Martin Hertweck. On the torsion units of some integral group rings. Algebra Colloq., 13(2):329-348, 2006.
    [HK02] Martin Hertweck and Wolfgang Kimmerle. On principal blocks of p-constrained groups. Proc. London Math. Soc. (3), 84(1):179-193, 2002.
    [Isa08] I. Martin Isaacs. Finite group theory, volume 92 of Graduate Studies in Mathematics. American Mathematical Society, Providence,RI, 2008.
    [Liu08] Jen-Hao Liu. Zassenhaus conjecture for groups of order p2q. Comm. Algebra, 36(5):1671-1674, 2008.
    [Rog91] Klaus W. Roggenkamp. Observations on a conjecture of Hans Zassenhaus. In Groups-St. Andrews 1989, Vol. 2, volume 160 of London Math. Soc. Lecture Note Ser., pages 427-444. Cambridge Univ. Press, Cambridge, 1991.
    [Seh93] S. K. Sehgal. Units in integral group rings, volume 69 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientic & Technical, Harlow, 1993. With an appendix by Al Weiss.
    [Val94] Angela Valenti. Torsion units in integral group rings. Proc. Amer. Math. Soc., 120(1):1-4, 1994.
    [Wei88] Alfred Weiss. Rigidity of p-adic p-torsion. Ann. of Math. (2), 127(2):317-332, 1988.
    [Wei91] Alfred Weiss. Torsion units in integral group rings. J. Reine Angew. Math., 415:175-187, 1991

    下載圖示
    QR CODE