簡易檢索 / 詳目顯示

研究生: 黃乃文
Nai-wen Huang
論文名稱: 一個以函數觀點發展國中生代數思維的行動研究
指導教授: 金鈐
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 256
中文關鍵詞: 行動研究函數觀點算術-代數思維反思教學概念教學功力
英文關鍵詞: Action research, Functional aspect, Arithmetic-algebraic thinking, Reflection, Pedagogical concept, Pedagogical power
論文種類: 學術論文
相關次數: 點閱:274下載:51
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究描述一位新手國中數學教師,於在職進修期間,透過反思重新檢視自己代數相關單元的教學,而展開一段教學行動研究的歷程。作者想探討:如何透過函數觀點,幫助國中生發展算術-代數思維?並評估其對學生數學學習的影響。據此,本研究的目的包括:設計相應的單元教學活動,幫助七年級生發展算術-代數的思維;評估學生代數與函數概念及態度的學習成效;以及,透過學生對教學的回饋和教師的教學-學理反思,再次檢視和重構教學概念與信念的內涵,以提升作者的代數教學知能。

    研究的結果顯示,函數觀點似乎可以扮演算術過渡至代數思維的一種學習媒介。藉由營造似真的代數問題情境,觀察和理解數量之間的關係,可以讓學生在獲得符號操作的技巧之外,同時理解基本的代數概念。在歷經挑戰(測試)、澄清(引入)、和轉變(擴展)三個階段的函數觀點,引動代數思維的教學(學習)行動中,作者一再地檢視其教學活動在認知、情意、和社會三個面向的學習成效,嘗試重新建構她自己的數學教學概念和課堂教學實務。教學重構的內涵包括:以函數觀點,發展算術-代數思維的教學策略與內容;學習起點行為、概念啟蒙、合作學習、及HLT-HTT的教學認知;以及,如何營造似真算術-代數問題解決的學習情境。根據研究的心得與省思,作者以「三階段三面向的教師-學生學習狀態脈絡圖」,表徵教(師)與學(生)的概念轉變歷程與內涵。其中,教師教學概念與實務的轉變和學生算術-代數思維認知、情意、與社會面的發展,形成一個相輔相成、動態互動的「雙學習環」,它們一同轉變也伴隨著發展。在這樣的轉變和發展的過程中,不僅學生能藉由函數觀點、合作學習、和似真學習情境,學得抽象的代數概念,教師也因而更深刻地體會到,代數的深層結構和教學概念以及國中生的算術-代數思維過程與特質。

    最後,作者認為,透過函數觀點似乎可以部分克服算術思維與代數思維的學習認知差異,進而局部解決國中階段代數教與學的問題。同時,也可以達成學校數學課程與教學的潛在目標(即變數的概念);亦即,藉由具體操作與課堂討論活動,使國中生了解符號的(變數)意義和等號的(變數)概念。另外,藉由教學功力(數學、教學、和反思)的深化,作者也提升了她的課堂代數教學的實做能力。希望,本階段性的研究方法、過程、模式、和心得,能提供給其他國中數學教師作為教學與專業發展的參照,以解決他(她)們自己的代數教學問題。

    This study describes the story of a novice mathematics teacher's action research on re-examining her classroom teaching of junior high school algebra, during master of mathematics education courses. The major research question for her is: How to develop arithmetic-algebraic thinking in terms of the functional aspect? Moreover, the study assesses its effects via that way. Thus, there are three aims. First is to design teaching activities in order to develop 7th graders' arithmetic-algebraic thinking; second, to assess teaching effects concerning the students' algebraic/functional concepts and attitudes toward learning; at last, to examine the possibility of re-conceptualizing the author's pedagogical/mathematical powers of teaching school algebra in terms of students' feedbacks and self-reflection.

    The results of this study showed that the functional aspect could be acted as a kind of learning media in transition of arithmetic to algebraic thinking for those 7th graders. By being embedded in an experientially real problem situation, observing and understanding quantitative relationships, the students were able to understand the fundamental algebraic concepts while obtaining the relevant symbol skills. Through challenging (test), clarifying (intervention), and changing (extension) phases, the author examined constantly the teaching effects in three orientations related to cognitive, affective, and social-interactive aspects, trying to re-construct her own mathematical/pedagogical powers and instruction practice. The re-construction consisted of developing teaching tactics/content of arithmetic-algebraic thinking; understanding student pre-requisites, generic concepts, cooperative learning approaches, Martin Simon's ideas of HLT-HTT, and learning how to build the experientially real arithmetic-algebraic learning situation. Based on the results, the author proposed “a 3-phases-3-aspcts model of teacher-student learning”, which included processes and content of changing concepts of teaching (teacher) and learning (students). Among the above, the transition of the teacher's mathematical/pedagogical concepts/practice and the development of the students' arithmetic-algebraic thinking were represented as a dynamic/interactive “doubled cycle of learning” informed each other. In this dynamically interactive process, not only students learned cooperatively the algebraic concepts with the functional aspect in the more or less real situation, the author also realized more deeply the underlying mathematical structures of algebra, relevant pedagogical concepts, and her students' algebraic thought processes.

    It seemed that the functional aspect could partly overcome the cognitive gaps of learning between arithmetic and algebraic thinking, and thus resolved partially the problems of teaching and learning algebra in the junior high level. It could also accomplish the implicit goal of school algebra, i.e. the concept of variables, through concrete operation with and classroom discussion on the meaning of symbols and equivalences in terms of variables concept. In addition, the author's abilities of algebraic teaching were improved in the process of re-conceptualizing or re-constructing mathematical/pedagogical/reflective powers. Hopefully, this phased research approaches and results can contribute references about teaching of algebra and the professional development to other mathematics teachers of junior high school, in resolving his or her problems of classroom mathematics teaching.

    第一章 緒論 第一節 研究的背景和動機....................................1 第二節 研究的問題和目的....................................7 第二章 文獻探討 第一節 算術-代數思維的發展.................................9 第二節 發展國中生的算術-代數思維............ .............29 第三節 數學教師的教學專業發展.............................40 第四節 數學教師教學概念的重構.............................46 第三章 研究方法 第一節 研究的場域.........................................55 第二節 行動研究法.........................................55 第三節 研究的設計.........................................58 第四節 研究的對象.........................................65 第五節 研究的工具.........................................66 第六節 研究資料的蒐集和分析...............................74 第七節 研究的限制.........................................76 第四章 研究的結果 第一節 準備階段研究的結果................................79 第二節 試探階段研究的結果................................84 第三節 整合階段研究的結果...............................108 第四節 教學行動研究的持續循環...........................136 第五章 回顧和省思 第一節 教師的教學轉變...................................139 第二節 教師教學轉變和學生代數(函數)學習的關係...........144 第三節 教師教學轉變和專業發展的關係.....................151 第六章 結論和建議 第一節 階段性研究的結論.................................155 第二節 下階段研究的建議.................................157 附 錄 附錄一:學生問卷.........................................163 附錄二:學生晤談資料.....................................180 附錄三:教學活動設計資料.................................198 附錄四:其他相關資料.....................................236

    一、中文部分
    1. 吳依芳 (2003):建模教學活動對國二學生學習線型函數概念之影響。台北市:國立台灣師範大學碩士論文(未出版)。
    2. 李美蓮和劉祥通 (2003):開啟國中代數教學的新視窗。科學教育月刊, 265, 2-15。
    3. 洪有情 (2003):青少年的數學概念學習研究-青少年的代數運算概念發展研究(3/3)。國科會專題研究計畫報告。台北市:國立台灣師範大學數學系。
    4. 洪萬生 (1998):康熙皇帝與符號代數。HPM通訊第二卷第一期。台北市:國立台灣師範大學數學系。
    5. 柳賢 (2004):探討九年一貫「數學」領域課程中代數能力指標轉化成教學素材之詮釋研究成果報告計畫。台北市:國立台灣師範大學數學系。
    6. 袁媛 (1993):國中一年級學生的文字符號概念與代數文字題的解題研究。高雄市:國立高雄師範大學碩士論文(未出版)。
    7. 張幼賢 (2003):青少年的數學概念學習研究-青少年的函數概念發展研究(2/2)。國科會專題研究計畫報告。台北市:國立台灣師範大學數學系。
    8. 郭汾派、林光賢和林福來 (1989):國中生文字符號概念的發展。國科會專題研究計畫報告。台北市:國立台灣師範大學數學系。
    9. 張春興 (1996):教育心理學。台北市:東華書局。
    10.張春興 (2002):張氏心理辭典。台北市:東華書局。
    11.許秀聰 (2005):一位資深高中數學教師重構教學概念的行動研究。台北市:國立台灣師範大學碩士論文(未出版)。
    12.曹博盛 (2004):九年一貫課程數學領域「代數主題」能力指標詮釋研究計畫。台北市:國立台灣師範大學數學系。
    13.陳盈言 (2001):國二學生變數概念的成熟度對其函數概念發展的影響。台北市:國立台灣師範大學碩士論文(未出版)。
    14.陳松靖 (2002):三位學生教師數學教學概念轉變歷程的個案研究。台北市:國立台灣師範大學碩士論文(未出版)。
    15.陳英娥和林福來 (2004):行動研究促進初任數學教師的教學成長。科學教育學刊, 12(1), 83-105。
    16.教育部 (2001):國民中學九年一貫課程暫行綱要。台北市:教育部。
    17.教育部 (2003):國民中小學數學領域課程綱要(92.03版)。台北:國立教育研究院籌備處。
    18.教育部 (2003):國民中小學九年一貫課程補充說明(草稿)(92.03版)。台北:國立教育研究院籌備處。
    19.教育部 (2003):九年一貫數學學習領域課程綱要(92.08.20版)(第五版草案)。台北:國立教育研究院籌備處。
    20.教育部 (2003):國民中學九年一貫課程綱要。台北市:教育部。
    21.國科會科教處 (2004):國科會科教處九十二年度九年一貫數學領域能力指標詮釋計畫成果發表會。台北市:國立台灣師範大學數學系。
    22.黃幸美 (1997):透析國小數學新課程與教學。研習資訊, 14(2), 29-34。
    23.黃凱旻 (2002):一個輔導中學數學實習教師教學概念轉變的行動研究。台北市:國立台灣師範大學碩士論文(未出版)。
    24.甄曉蘭 (1997):教學理論。台北市:師大書苑。
    25.鄭英豪 (2000):實習教師數學教學概念的學習:以「概念啟蒙例」的教學概念為例。台北市:國立台灣師範大學博士論文(未出版)。
    26.蔡淑貞 (1987):診斷教學的理念。科學教育月刊, 100, 41-48。
    27.蔣宇立 (1999):學習數學符號所產生焦慮之研究─從後設認知的觀點對國一學生進行研究。彰化:國立彰化師範大學碩士論文(未出版)。
    28.貓頭鷹編譯小組譯 (1999):大學辭典系列10-數學辭典。台北市:貓頭鷹出版社。
    29.鍾靜 (2003):論九年一貫課程數學領域之暫行綱要。國立教育研究院籌備處1335期九年一貫課程數學學習領域深耕種子教師研習資料, 150-165。
    30.謝豐瑞 (2003):九年一貫深耕研習課程講師大綱「九年一貫數學學習領域能力指標解讀與轉化—以代數為例」。台北:國立教育研究院籌備處。
    31.藍雅慧 (2001):知情意整合的國中生數學學習歷程模式之建構。台北市:國立台灣師範大學碩士論文(未出版)。
    32.Altrichter, H., Posch, P., & Somekh, B. (1993). Teachers investigate their work: An introduction to the methods of action research. London: Routledge. [夏林清譯 (1997):行動研究方法導論─教師動手做研究。台北市:遠流出版社。]
    33.Argyris, C., Putnam, R., & Smith D.M. (1985). Action science. San Francisco: Jossey-Bass. [夏林清譯 (2000):行動科學。台北市:遠流出版社。]
    34.Bogdan, R.C., & Biklen, S.K. (1998). Qualitative research for education: An introduction to theory and method (3rd ed). Boston: Allyn & Bacon. [黃光雄主譯 (2003):質性教育研究理論與方法。台北市:濤石文化事業有限公司。]
    35.Booth,L.R.(1986):數學學習困難與診斷教學專題演講。台北市:國立台灣師範大學數學系。
    36.Skemp, R.S. (1989). Mathematics in the primary school. London: Routledge.[許國輝譯 (1995):小學數學教育─智性學習。香港:香港公開進修學院出版社。]
    37.Strauss, A., & Corbin, J. (1998). Basis of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). CA: Sage. [吳芝儀和廖梅花合譯 (2003):質性研究入門─紮根理論研究方法。台北市:濤石文化事業有限公司。]

    二、英文部分
    1. Artzt, A.F., & Armour-Thomas, E. (1999). A cognitive model for examining teachers’ instructional practice in mathematics: A guide for facilitating teacher reflection. Educational Studies in Mathematics, 40, 211-235.
    2. Barbara, M. (Ed.) (1999). Algebraic thinking grades K–12, readings from NCTM’s school-based journals and other publications. Reston: NCTM.
    3. Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: Perspectives for research and teaching. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra (pp.3-12), Dordrecht: Kluwer Academic Publishers.
    4. Bishop, A., Seah, W.T., & Chin. C. (2003). Value in mathematics teaching-the hidden persurders? In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick, & F.K.S. Leong (Eds.), Second International Handbook of Mathematics Education (pp.717-765). Dordrecht: Kluwer Academic Publishers.
    5. Boaler, J. (2002). Exploring the nature of mathematical activity: Using theory, research and ‘working hypotheses’ to broaden conceptions of mathematics knowing. Education Studies in Mathematics, 51, 3-21.
    6. Brown, C.A., & Borko, H. (1992). Becoming a mathematics teacher. In D.A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.209-239). New York: Macmillam.
    7. Cooney, T.J. (1994). Teacher education as an exercise in adaptation. In D.B. Aichele, & A.F. Coxford (Eds.), Profession Development: 1994 Year Book (pp. 9-22). Reston: NCTM.
    8. Cooney, T.J. (2001). Considering the paradoxes, perils and purposes of conceptualizing teacher development. In F.L. Lin, & T.J. Cooney (Eds.), Making Sense of Mathematics Teacher Education (pp.9-31). Dordrecht: Kluwer Academic Publishers.
    9. Dewey, J. (1993). How we think: A restatement of the relation of reflective thinking to the educative process. Lexington, MA: D.C. Heath.
    10.Engilsh, L.D., & Halford, G.S. (1995). Cognitive models and processes in mathematics education. Mathematics Education Models and Processes (pp.57-96). Mahwah, N.J.: Lawrence Erlbaum Associates.
    11.Engilsh, L.D., & Halford, G.S. (1995). Advanced computational models and processes. Mathematics Education Models and Processes (pp.219-255). Mahwah, N.J.: Lawrence Erlbaum Associates.
    12.Ensor, P. (2001). From preservice mathematics teacher education to beginning teaching: A study in recontextualizing. Journal for Research in Mathematics Education, 32(3), 296-320.
    13.Filloy, E., & Sutherland, R. (1996). Designing curricula for teaching and learning algebra. In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick, & Laborde (Eds.), International Handbook of Mathematics Education (pp.139-160). Dordrecht: Kluwer Academic Publishers.
    14.Fischbein, E., & Muzicant, B. (2002). Richard Skemp and his conception of relational and instrumental understanding : Open sentences and open phrases. In D. Tall, & M. Thomas (Eds.), Intelligence, Learning and Understanding in Mathematics: A Tribute to Richard Skemp (pp.49-78). Flaxton, Australia: PostPressed.
    15.Fuller, F.F. (1969). Concerns of teachers: A developmental conceptualization. American Educational Research Journal, 6, 207-226.
    16.Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: A proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116-140.
    17.Jaworski, B. (2001). Developing mathematics teaching: Teachers, teacher educators, and researchers as co-learners. In F.L. Lin, & T.J. Cooney (Eds.), Making Sense of Mathematics Teacher Education (pp.295-320). Dordrecht: Kluwer Academic Publishers.
    18.Kieran, C. (1992). The learning and teaching of school algebra. In D.A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.390-419). New York: Macmillan.
    19.Kieran, C., Boileau, A., & Garancon, M. (1996). Introducing algebra by means of a technology-supported, functional Approach. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approcaches to Algebra (pp.257-293). Dordrecht: Kluwer Academic Publishers.
    20.Kchemann, D.E. (1981). Algebra. In K.M. Hart (Ed.), Children’s Understanding of Mathematics: 11-16 (pp.102–119). London: John Murray.
    21.Lave, J., & Wenger, E. (1991). Situated Learning–Legitimate Peripheral Participation. Cambridge: Cambridge University Press.
    22.Lerman, S. (2001). A review of research perspectives on mathematics teacher education. In F.L. Lin, & T.J. Cooney (Eds.), Making Sense of Mathematics Teacher Education (pp.33-52). Dordrecht: Kluwer Academic Publishers.
    23.Markovits, Z., Eylon, B., & Bruckheimer, M. (1986). Functions today and yesterday. For the Learning of Mathematics, 6(2), 18-24.
    24.McLaughlin, M.W. (1994). Strategic sites for teachers’ professional development. In P. Grimnett, & J. Nevfeld (Eds.), Teacher Development and the Struggle for Authenticity (pp.31-51). New York: Teachers College Press.
    25.McNiff, J. (1988). Action research: Principles and practice. New York: Macmillan.
    26.NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston: NCTM.
    27.NCTM (1991). Professional standards for teaching mathematics. Reston: NCTM.
    28.NCTM (2000). Principle and standards for school mathematics. Reston: NCTM.
    29.Nickson, M. (2000). Algebra: The transition from arithmetic. Teaching and Learning mathematics: A Teachers’ Guide to Recent Research and its Application (pp.109-146). London: Cassell.
    30.Noddings, N. (1992). Professionalization and mathematics teaching. In D.A. Grovws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.209-239). New York: Macmillan.
    31.Raymond, A.M., & Leinenbach, M. (2000). Collaborative action research on the learning and teaching of algebra: A story of one mathematics teacher’s development. Educational Studies in Mathematics, 41(3), 283-307.
    32.Schn, D.A. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.
    33.Sfard , A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
    34.Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational Research, 15(2), 4-14.
    35.Shulman, L.S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23.
    36.Simon, M.A., & Schifter, D. (1991). Towards a constructivist perspective: An intervention study of mathematics teacher development. Educational Studies in Mathematics, 22, 309-331.
    37.Simon, M. (1994). Learning mathematics and learning to teach: Learning cycles in mathematics teacher education. Educational Studies in Mathematics, 26, 71-94.
    38.Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
    39.Simon, M.A., & Tzur, R. (1999). Explicating the teacher’s perspective from the researchers’ perspectives: Generating accounts of mathematics teachers’ practice. Journal for Research in Mathematics Education, 30(3), 252-264.
    40.Skott, J. (2004). The forced autonomy of mathematics teacher. Educational Studies in Mathematics, 55, 227-257.
    41.Streefland, L. (1991). Realistic mathematics education in primary school. Utrecht: Freudenthal Institute.
    42.Sprinthall, N.A., Reiman, A.J., & Thies-Sprinthall, L. (1996). Teacher professional development. Handbook of Research on Teacher Education (2nd ed.) (pp.666-703). Dordrecht: Kluwer Academic Publishers
    43.Tall, D., Gray, E., Ali, M.B., Crowley, L., DeMarois, P., McGowen, M., Pitta, D., Pinto, M., Thomas, M., & Yusof, Y. (2001). Symbols and the bifurcation between procedural and conceptual thinking. Canadian Journal of Science, Mathematics and Technology Education, 81-103.
    44.Thompson, A.G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.127-146). New York: Macmillan.
    45.Tirosh, D., & Graeber, A.O. (2003). Challenging and changing mathematics teaching classroom practices. In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick, & F.K.S. Leong (Eds.), Second International Handbook of Mathematics Education (pp.643-687). Dordrecht: Kluwer Academic Publishers
    46.Tzur, R. (2001). Becoming mathematics teacher-educator: Conceptualizing the terrain through self-reflective analysis. Journal of Mathematics Teacher Education, 4, 259-283.
    47.Van Amerom, B.A. (2003). Focusing on informal strategies when linking arithmetic to early algebra. Educational Studies in Mathematics, 54, 63-75.
    48.Warren, E. (2003) The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15(2), 122-137.
    49.Wilson, S.M., Shulman, L.S., & Richert, A.E. (1987). 150 different ways’ of knowing: Representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring Teachers’ Thinking (pp.104-124). London: Cassell.
    50.Yerushalmy, M. (2000). Problem solving strategies and mathematical resources: A longitudinal view on problem solving in a function based approach to algebra. Educational Studies in Mathematics, 43, 125-147.
    51.Zaslavsky, O., Chapman, O., & Leikin, R. (2003). Professional development of mathematics educators:Trends and tasks. In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick, & F.K.S. Leong (Eds.), Second International Handbook of Mathematics Education (pp.877-917). Dordrecht: Kluwer Academic Publishers.
    52.Zaslavsky, O., & Leikin, R. (2004). Professional development of mathematics educators: Growth through practice. Journal of Mathematics Teacher Education, 7, 5-32.

    QR CODE