簡易檢索 / 詳目顯示

研究生: 王政穎
Wang, Cheng-Ying
論文名稱: 次世代電子元件: 鐵電矽鍺元件、氮化鎵、二維材料
Future Generation Electronics: Ferroelectric Gate SiGe FETs、GaN-based MOS-HEMT、Two-Dimensional Materials
指導教授: 李敏鴻
Lee, Min-Hung
鍾朝安
Jong, Chao-An
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 鐵電氮化鎵矽鍺二維材料
英文關鍵詞: Ferroelectric, GaN, SiGe, Two-dimensional materials
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.018.2018.E08
論文種類: 學術論文
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著物聯網(IoT)及穿戴式行動裝置的普及,電晶體發展朝向小尺寸、高效能及低功率。我們成功發展出可應用於未來世代的電子元件,如鐵電閘極矽鍺電晶體及其鐵電特性研究、氮化鎵、二維材料。
    本研究將分為二硫化鎢(WS2)、氮化鎵、鐵電閘極矽鍺電晶體及其鐵電特性研究,第一部份為探討成長WS2製程方式,如製程溫度、時間、壓力、含氫量等。第二部分為利用AlGaN/GaN HEMT電晶體設計及特性表現元件,為閘極場平板元件,以及鐵電閘極矽鍺電晶體。第三部分為利用HfZrO2於鐵電材料分析及應用。以上元件,目標為降低操作電壓VDD,以降低元件的耗能,達到低功率目的。

    The internet of things (IoT) and wearable applications become more popular in recent years. Therefore, it has became become necessary to develop small sized, high performance devices, and low power consumption.
    This theory will be divided into two-dimensional materials, GaN-based MOS-HEMT, Ferroelectric Gate SiGe FETs and its characteristics. The first part, WS2 processes is presented such as process temperature, time, pressure, and Hydrogen to Argon ratio. The second part is AlGaN/GaN HEMTs including design and characteristics, which are gate field plate components. As well as ferroelectric gate SiGe FETs are presented in this session. The HfZrO2 with ferroelectric materials anylsis and application will be mentioned in third part. All electronics in this theory aims for reducing the operation voltage VDD, and being low-power devices.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 第二章 CVD之二次成長方式製備WS2 3 2-1 二維材料介紹與性質 3 2-1.1 石墨烯 (Graphene) 3 2-1.2 二硫化鉬(MoS2 molybdenum disulfide) 4 2-1.3 TMDs材料之結構 5 2-2 二維材料之鍵結分析 6 2-2.1 MoS2之鍵結分析 6 2-2.2 WS2之鍵結分析 6 2-3 CVD成長方式製作WS2製程 7 2-3.1 試片清洗與氧化物生成 7 2-3.2 TMDs前驅物生長與半導體製程 8 2-3.3 以CVD方式硫化 9 2-3.4 Raman光學特性 10 2-4 二維材料之WS2製程實驗結果 11 2-4.1 WS2之含H2不同比例比較 11 2-4.2 WS2之不同的反應溫度比較 13 2-4.3 WS2之不同的反應壓力 15 2-4.4 WS2之不同的反應時間 17 2-5 結論 19 第三章 InAlN/AlN/GaN HEMTs與矽鍺-NCFET 20 3-1 InAlN/AlN/GaN HEMT 材料原理與工作原理 20 3-1.1 基板材料分析 20 3-1.2 材料比較分析 21 3-1.3 二維電子氣(2DEG) 21 3-2 InAlN/AlN/GaN HEMTs 半導體製程 24 3-2.1 試片切割 24 3-2.2 試片表面處理 24 3-2.3 黃光微影製程 25 3-2.4 金屬電極沉積 26 3-2.5 圖形剝離 (Lift-off) 26 3-2.6 快速熱退火 27 3-2.7 閘極介電層 27 3-2.8 閘極製作 27 3-3 InAlN/AlN/GaN HEMTs電性特性分析 29 3-3.1 接觸電阻 29 3-3.2 直流特性 29 3-4 矽鍺元件製作流程與設計 30 3-4.1 試片表面處理 30 3-4.2 黃光微影製程 31 3-4.3 摻雜與活化 33 3-4.4 ALD-鐵電負電容製備流程 34 3-4.5 閘極金屬 34 3-4.6 乾蝕刻 (Dry-Etching) 35 3-5 矽鍺元件之量測與結果 36 3-5.1 矽鍺元件之NC-FET 36 3-6 結論 37 第四章 鐵電材料HfZrO用於Fe-FET與MFM結構之鐵電記憶體應用 38 4-1 文獻探討 38 4-1.1 鐵電鉿基氧化物 38 4-1.2 Zr:HfO2 38 4-2 Ferroelectric HfZrO元件製備流程與設計 40 4-2.1 試片清洗與切割 40 4-2.2 鐵電負電容製備 41 4-2.3 閘極金屬 41 4-2.4 閘極黃光微影製作 42 4-2.5 乾蝕刻 (Dry-Etching) 43 4-2.6 GI-XRD材料分析 44 4-3 MFM元件量測與結果 45 4-3.1 MFM結構之PVD與ALD金屬選擇 45 4-3.2 MFM結構之不同HZO厚度 47 4-3.3 MFM結構之不同結構對HZO退火影響 50 4-3.4 MFM結構之不同下電極厚度對HZO影響 55 4-3.5 MFM結構之不同界面層對HZO影響 58 4-4 結論 60 4-5 Fe-FET元件量測與結果 61 4-5.1 Fe-FET結構之使用不同TaN厚度對HZO影響 63 4-5.2 Fe-FET結構之不同介電層對HZO影響 67 4-5.3 Fe-FET結構之不同界面層對HZO影響 69 4-5.4 Fe-FET結構之使用CF4對HZO影響 73 4-6 結論 76 第五章 總結論與未來工作 77 5-1 總結論 77 5-2 未來工作 78 文獻參考 79

    [1] https://www.eetimes.com/document.asp?doc_id=1331766,20180630
    [2] http://www.semi.org/en/node/55926,20180701
    [3] A. K. Geim, and I. V. Grigorieva, “Van der Waals heterostructures, ” Nature, vol. 499, no. 7459, pp. 419, 2013.
    [4] R. D. Booker, and E. Boysen, Nanotechnology for dummies: John Wiley & Sons, 2011.
    [5] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors, ” ACS nano, vol. 6, no. 1, pp. 74-80, 2011.
    [6] L. Xie, “Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications, ” Nanoscale, vol. 7, no. 44, pp. 18392-18401, 2015.
    [7] S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable photoluminescence of monolayer MoS2 via chemical doping, ” Nano letters, vol. 13, no. 12, pp. 5944-5948, 2013.
    [8] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2, ” ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
    [9] Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, and J.-C. Charlier, “Identification of individual and few layers of WS2 using Raman Spectroscopy, ” Scientific reports, vol. 3, pp. 1755, 2013.
    [10] P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates, ” IEEE Electron Device Letters, vol. 23, no. 1, pp. 4-6, 2002.
    [11] R. T. Kemerley, H. B. Wallace, and M. N. Yoder, “Impact of wide bandgap microwave devices on DoD systems, ” Proceedings of the IEEE, vol. 90, no. 6, pp. 1059-1064, 2002.
    [12] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs, ” IEEE Transactions on electron devices, vol. 48, no. 3, pp. 450-457, 2001.
    [13] P. Javorka, “Fabrication and Characterization of AIGaN/GaN High Electron Mobility Transistors, ” Citeseer, 2004.
    [14] T. Boescke, J. Heitmann, and U. Schroder, “Integrated Circuit With Dielectric Layer, “ U.S. Patent No. 14, 7709359B2 (4 May, 2010)
    [15] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors." in IEDM Tech. Dig., Dec. 2011, pp.547-550.
    [16] P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Muller, "Ferroelectric deep trench capacitors based on Al: HfO2 for 3D nonvolatile memory applications.".IMW,May,2014.
    [17] C. H. Cheng, and A. Chin, “Low-voltage steep turn-on pMOSFET using ferroelectric high-$ kappa $ gate dielectric,” IEEE Electron Device Lett., vol. 35, no. 2, pp. 274-276, 2014.
    [18] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, and C. S. Hwang, “Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films, ” Nano Energy, vol. 12, pp.131-140, Dec. 2015.
    [19] Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, M.-H. Lee, H.-H. Hsu and S.-S. Yen, “Low Power 1T DRAM/NVM Versatile Memory Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85oC-Extrapolated 1016 Endurance, ” in VLSI Symp., in VLSI Technology Symp., Jun. 2015, pp. T184-T185.
    [20] S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, and M. Saitoh, "First demonstration and performance improvement of ferroelectric HfO 2-based resistive switch with low operation current and intrinsic diode property." in VLSI Technology Symp., Jun. 2016, pp. 148-149.
    [21] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, and S. Slesazeck, "Novel ferroelectric FET based synapse for neuromorphic systems." in VLSI Technology Symp., Jun. 2017, pp. T176-T177
    [22] J. Van Houdt, "Memory technology for the terabit era: From 2D to 3D." in VLSI Technology Symp., Jun. 2017, pp. T24-T25.
    [23] K.-S. Li, P.-G. Chen, T.-Y. Lai, C.-H. Lin, C.-C. Cheng, C.-C. Chen, Y.-J. Wei, Y.-F. Hou, M.-H. Liao, and M.-H. Lee, "Sub-60mV-swing negative-capacitance FinFET without hysteresis. " in IEDM Tech. Dig., Dec. 2015, pp. 620-623.
    [24] M. H. Lee, P.-G. Chen, C. Liu, K-Y. Chu, C.-C. Cheng, M.-J. Xie, S.-N. Liu, J.-W. Lee, S.-J. Huang, M.-H. Liao, M. Tang, K.-S. Li, and M.-C. Chen, “Prospects for Ferroelectric HfZrOx FETs with Experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, Switch-OFF, ” in IEDM Tech. Dig., Dec. 2015, pp. 616-619.
    [25] M. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, and M.-H. Liao, "Physical thickness 1. x nm ferroelectric HfZrOx negative capacitance FETs." in IEDM Tech. Dig., Dec. 2016, pp. 306-309.
    [26] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, ” NanoLetters, vol. 8, no. 2, pp. 405-410, Dec. 2008.
    [27] S. Salahuddin, and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?." in IEDM Tech. Dig., Dec. 2008, pp. 693-696.
    [28] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in simple binary ZrO2 and HfO2, ” Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012.

    無法下載圖示 本全文未授權公開
    QR CODE