研究生: |
陳碧鳳 |
---|---|
論文名稱: |
兩位國中數學教師幾何教學概念的個案研究 |
指導教授: | 金鈐 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 213 |
中文關鍵詞: | 教學構思 、教學實作 、幾何教學概念 、教師專業發展 、課堂觀察 |
英文關鍵詞: | Pedagogical thinking, Teaching practice, Pedagogical conceptions of geometry, Professional development of teacher, Classroom observation |
論文種類: | 學術論文 |
相關次數: | 點閱:178 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用個案研究法和教室觀察法描述兩位國中數學教師幾何單元的數學教學概念。依據七年級數學課程的內容,將研究過程分為以數型關係為主題的前導研究以及平面幾何圖形與幾何圖形轉變的第一和第二階段研究。個人透過問卷調查、個案晤談和教室觀察蒐集各類實徵資料,據此分析與詮釋兩位個案教師在不同類型班級中的幾何教學構思和教學實作。
研究結果顯示,兩位教師分別呈現出相似和不同的幾何教學概念,而且對於不同類型的班級也會有不同的教學構思與實作方式。其中,教師個人之前的數學學習經驗、對學生學習的掌握和課程教材內容的理解是影響教學構思的主要因素。雖然,個別教師教學前的構思和實際的教學活動具有相當程度的一致性,但是,學生的學習成效不佳和教材內容不易理解會使得教師的構思與實作有些微的落差。兩位教師的幾何教學實作最大的差異在於操作取向的教學活動
。其中一位認為操作和幾何概念應該並重,因而利用具體物來協助學生建立幾何圖形的視覺心像。另一位則採用生活實例或自製教具來講述抽象幾何概念的內容,以幫助學生建立相同的視覺心像。另外,兩位教師也會藉由反思自己的教學和學生的學習情況,以及透過與同事互動討論來學習如何教授幾何概念,以提升教學的品質。
最後,本研究的結果應能協助國中在職數學教師瞭解幾何單元教學構思與實作的內涵、差異及影響因素,以設計出更適合國中生幾何學習的活動;更希望有助於國中數學教師瞭解自己的幾何教學概念,進而引動數學教學專業的成長。
Case study and classroom observation were adopted in this study which described the pedagogical conception of two junior high school mathematics teachers when they taught geometry. According to the content of 7 grade’s mathematics curriculum, this research process was divided into the pilot study which took the relations of numbers and patterns as the theme, and first and second stage studies took geometric plane figures and transformation of geometric figures as the themes respectively. The author used questionnaires, interviews and classroom observations to collect the empirical data, to analyze and interpret the pedagogical thinking and teaching practices when they taught different kinds of classes.
The results revealed that two teachers displayed similar and different pedagogical conceptions of geometry, and they had different pedagogical thinking and teaching practices in different kinds of classes. Among them, teachers’ former learning experience, grips of students learning conditions and understanding of curriculum materials were the main factors that influenced teachers’ pedagogical thinking. Although the teacher’s pedagogical thinking and classroom activities were fair coincidence, but the low efforts of students’ learning and the indigestibility of materials would make her pedagogical thinking and teaching practices slightly disagree. The main difference between two teachers’ teaching practices in geometric units was the manipulative activities. One of them considered manipulative activities and geometric concepts should be equally emphasized, therefore she used the concrete objects to help students to construct visual imagery of geometric figures. Another used the examples of live or handmade instructional aids to discourse the abstract geometric concepts to help students to construct the same visual imagery. In addition, they would also reflect their classroom activities and students’ learning conditions. They also discussed with colleagues about how to teach geometric concepts, so as to advance their teaching quality.
Finally, the results of this research might help junior high school in-service teachers to understand the connotations, differences and influential factors of pedagogical thinking and teaching practices. On the basis of these results the junior high school mathematics teachers could design more proper geometric learning activities to students, and helped them to figure out their own pedagogical conceptions of geometry, furthermore to facilitate their professional development of teaching.
一、中文部分
左台益和梁勇能(2001)。國二學生空間能力與van Hiele幾何思考層次相關
性研究。師大學報:科學教育類,46(2),1-20。
呂淑莉(2004)。教師分級制度與教師專業成長。師說,180,17-19。
巫銘昌(2001)。理性思維之教學內涵研究。教育研究,83,72-94。
李源順(1998)。校內數學教師專業發展的互動模式。師大學報:科學教育類
,43(2),1-23。
吳勝安(2005)。發展符合九年一貫課程之幾何教學模組之研究~以「S-4-13
」能力指標為例。彰化市:國立彰化師範大學碩士論文(未出版)。
林清山(1977)。數學課程設計和數學教學的理論基礎(上)。科學教育月刊
,11,10-20。
林福來(1997)。教學思維的發展:整合數學教學知識的教材教法(1/3)。行
政院國家科學委員會專題研究計畫進度報告。
金鈐和林福來(1998)。準數學教師學習教學之前的教學觀念及其緣起。科學
教育學刊,6(3),219-254。
周筱亭和黃敏晃(2006)。國小數學教材分析-幾何。台北縣:國立教育研究
院籌備處。
范良火(2003)。教師教學知識發展研究。上海市:華東師範大學出版社。
教育部(2001)。國民中學九年一貫課程暫行綱要。台北市:教育部。
教育部(2003)。國民中學九年一貫課程綱要。台北市:教育部。
許秀聰(2005)。一位資深高中數學教師重構教學概念的行動研究。臺北市 :
國立台灣師範大學碩士論文(未出版)。
張靜嚳(1982)。一些簡易的數學教具-幾何篇。科學教育月刊,53,38-42
張繼元(2005)。六位學生數學教師教學價值認同的個案研究。臺北市 : 國立
台灣師範大學碩士論文(未出版)。
陳季佳主編(2004)。國民中學數學課本一年級上學期。台南市:翰林出版事
業股份有限公司。
陳松靖(2002)。三位學生教師數學教學概念轉變歷程的個案研究。臺北市 :
國立台灣師範大學碩士論文(未出版)。
梁勇能(2000)。動態幾何環境下,國二學生空間能力學習之研究。臺北市 :
國立台灣師範大學碩士論文(未出版)。
馮允禮(1979)。直觀幾何的缺點。國民教育,22(7),10-12。
黃凱旻和金鈐(2003)。一個輔導中學數學實習教師教學概念轉變的行動研究
。師大學報:科學教育類,48(1),23-46。
黃經良主編(2005)。國民中學數學課本一年級下學期。台南市:翰林出版事
業股份有限公司。
黃乃文(2005)。一個以函數觀點發展國中生代數思維的行動研究。臺北市 :
國立台灣師範大學碩士論文(未出版)。
楊深坑(2002)。從專業理念的新發展論我國師資培育法之修訂。教育研究月
刊,98,79-90。
鄭英豪(2000)。實習教師數學教學概念的學習:以「概念啟蒙例」的教學概念
為例。臺北市 : 國立台灣師範大學博士論文(未出版)。
謝豐瑞(1994)。使幾何教學活潑化-摺紙及剪紙篇。科學教育月刊,171,29
-41。
饒見維(1996)。教師專業發展-理論與實務。台北市:五南圖書出版股份有
限公司。
Bogdan, R. C., & Biklen S. K. (1998). Qualitative research
for education:An introduction to theory and methods
(3rd ed.). Boston: Allyn & Bacon. [黃光雄主譯(2001)。質性
教育研究理論與方法。台北市:濤石文化事業有限公司。]
Nickson, M. (2000). Shape and space. In M. Nickson (Ed.),
Teaching and learning mathematics : a teacher's guide
to recent research (pp. 49-85). London : Cassell. [李震
甌(2004)。圖形與空間。載於詹勳國等(主譯)。數學的學習與教學:六
歲到十八歲 (pp. 81-136)。臺北市:心理出版社股份有限公司。]
Robert, K. Y. (1994). Case study research design and
methods(2nd ed.). Thousand Oaks : Sage Publications. [尚
榮安譯(2001)。個案研究法。台北市:弘智文化事業有限公司。]
Strauss, A., & Corbin, J. (1998). Basis of qualitative
research: Techniques and procedures for developing
grounded theory (2nd ed.). Thousand Oaks:Sage
Publications. [吳芝儀和廖梅花合譯(2001)。質性研究入門─紮根理
論研究方法。台北市:濤石文化事業有限公司。]
二、英文部分
Andrews, P., & Hatch, G. (2000). A comparison of Hungarian
and English Teachers’ conceptions of mathematics and its
teaching. Educational Studies in Mathematics, 43,31-64.
Artzt, A. F., & Armour-Thomas, E. (1999). A cognitive model
for examining teachers’ instructional practice in
mathematics:A guide for facilitating teacher reflection.
Educational Studies in Mathematics, 40, 211-235.
Ball, D. L., & Bass, H. (2000). Interweaving content and
pedagogy in teaching and learning to teach: Knowing and
using mathematics. In J. Boaler (Ed.), Multiple
perspectives on mathematics teaching and learning (pp.
83-104). Westport:Ablex Publishing.
Bishop, A. J. (1983). Space and geometry. In R. Lesh, & M.
Landau (Eds.), Acquisition of mathematics concepts and
processes (pp. 175-203). New York:Academic Press.
Blanton, M. L., & Kaput, J. J. (2005). Charaterizing a
classroom practice that promotes algebraic reasoning.
Journal for Research in Mathematics Education, 36(5),
412-446.
Broko, H., Cone, R., Russo, N.A., & Shavelson, R.J.(1979).
Teachers’ decision making. In P. L. Peterson, & H. J.
Walberg (Eds.), Research on teaching (pp. 136-159).
Berkeley:McCutchan.
Brown, G. A., & Borko, H. (1992). Becoming a mathematics
teacher. In D. A. Grouws (Ed.), Handbook of research on
mathematics teaching and learning (pp. 209-239). New
York: Macmillam.
Brown, B. B., Mendenhall, W., & Beaver, R. (1968). The
reliability of observations of teachers’ classroom
behavior. The Journal of Experimental Education, 36(3),
1-10.
Chin, C. (1995). Mathematics teachers’ beliefs, their
classroom practices and influences on student learning:
Four case studies. Unpublished doctoral dissertation,
The University of Cambridge.
Christensen, D. (1996). The professional knowledge-
research base for teacher education. In W. R. Houston
(Ed.), Handbook of research on teacher education (2nd
ed.)(pp. 38-52). New York:Macmillan Library Reference.
Clark, C. M., & Peterson, P. L. (1986). Teachers’ thought
processes. In M. C. Wittrock (Ed.), Handbook of research
on teaching (3rd ed.)(pp. 255-296). New York:Macmillan.
Clark, C. M., & Yinger, R. J. (1979). Teachers’ thinking.
In P. L. Peterson, & H. J. Walberg (Eds.), Research on
teaching (pp. 231-263). Berkeley:McCutchan.
Clements, D. H., & Battista, M. T. (1992). Geometry and
spatial resoning. In D. A. Grouws (Ed.), Handbook of
research on mathematics teaching and learning (pp. 420-
464). New York:Macmillan.
Cooney, T. J. (1994). Teacher education as an exercise in
adaptation. In D. B. Aichele, & A. F. Coxford (Eds.),
Profession development: 1994 yearbook (pp. 9-22).
Reston,VA:National Council of Teachers of Mathematics.
Cooney, T. J. (2001). Considering the paradoxes, perils,
and purposes of conceptualizing teacher development. In
F. L. Lin, & T. J. Cooney (Eds.), Making sense of
mathematics teacher education (pp. 9-31). Boston:Kluwer
Academic Publishers.
Cooney, T. J., & Wiegel, H. G. (2003). Examining the
mathematics in mathematics teacher education. In A. J.
Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F.
K. S. Leung (Eds.), Second international handbook of
mathematics education (pp. 795-828). Boston:Kluwer
Academic Publishers.
Crowley, M. L. (1987). The van Hiele model of the
development of geometric thought. In M. M. Lindquist, &
A. P. Shulte (Eds.), Learning and teaching geometry, K-
12:1987 yearbook (pp. 1-16). Reston, VA:National
Council of Teachers of Mathematics.
Dunkin, M.J., & Biddle, B.J. (1974). The study of teaching.
Lanham:University Press of America.
Duval, R. (1999). Questioning argumentation. Proof, Preuve,
Prueba : International Newsletter on the Teaching and the
Learning of Mathematical Proof.
http://www.lettredelapreuve.it/Newsletter/991112Theme/
991112ThemeUK.html.
Even, R., & Tirosh, D. (1995). Subject-matter knowledge and
knowledge about students as sources of teacher
presentations of the subject-matter. Educational Studies
in Mathematics, 29, 1-20.
Farrell, M. A. (1987). Geometry for secondary school
teachers. In M. M. Lindquist, & A. P. Shulte (Eds.),
Learning and teaching geometry, K-12:1987 yearbook (pp.
236-250). Reston, VA:National Council of Teachers of
Mathematics.
Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge
and its impact. In D. A. Grouws (Ed.), Handbook of
research on mathematics teaching and learning (pp. 147-
164). New York:Macmillan.
Frick, T., & Semmel, M. I. (1978). Observer agreement and
reliabilities of classroom observational measures.Review
of Educational Research, 48(1), 157-184.
Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele
model of thinking in geometry among adolescents. Reston,
VA:National Council of Teachers of Mathematics.
Hartmann, D. P. (1977). Consideration in the choice of
interobserver reliability estimates. Journal of Applied
Behavior Analysis, 10(1), 103-116.
Henderson, E. M. (1988). Preservice secondary mathematics
teachers’ geometric thinking and their flexibility in
teaching geometry. Ann Arbor:UMI.
Jaworski, B. (1992). Mathematics teaching:What is it?For
the Learning of Mathematics, 12(1), 8-14.
Jaworski, B. (2001). Developing mathematics teaching:
Teachers, teacher educators, and researchers as
co-learners. In F. L. Lin, & T. J. Cooney (Eds.), Making
sense of mathematics teacher education (pp. 295-320).
Boston:Kluwer Academic Publishers.
Jaworski , B. & Gellert, U. (2003). Education new
mathematics teachers:Integrating theory and practice,
and the roles of practicing teachers. In A. J. Bishop,
M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S.
Leung (Eds.), Second international handbook of
mathematics education (pp. 830-875). Boston:Kluwer
Academic Publishers.
Koehler, M. S. & Grouws, D. A. (1992). Mathematics teaching
practices and their effects. In D. A. Grouws (Ed.),
Handbook of research on mathematics teaching and learning
(pp. 115-126). New York:Macmillan.
Lerman, S. (2001). A review of research perspectives on
mathematics teacher education. In F. L. Lin, & T. J.
Cooney (Eds.), Making sense of mathematics teacher
education (pp. 33-52). Boston : Kluwer Academic
Publishers.
Ma, L. (1999). Knowing and teaching elementary mathematics.
Mahwah:Lawrence Erlbaum Associates.
Mayberry, J. (1983). The van Hiele levels of geometric
thought in undergraduate preservice teachers. Journal
for Research in Mathematics Education, 14(1), 58-69.
McIntyre, D. I. (1980). Systematic observation of classroom
activities. Educational Analysis, 2(2), 3-30.
McIntyre, D., & Macleod, G. (1978). The characteristics
and uses of systematic classroom observation. In R. McAleese, & D. Hamilton (Eds.), Understanding classroom
life (pp. 111-131). Windsor:NFER.
Moore, S. D., & Bintz, W. P. (2002). Teaching geometry and
measurement through literature. Mathematics Teaching in
the Middle School , 8(2), 78-83.
Moyer, P. S. (2001). Are we having fun yet?How teachers
use manipulatives to teach mathematics. Educational
Studies in Mathematics, 47, 175-197.
Moyer, P. S., & Jones, M. G. (2004). Controlling choice:
Teachers, students, and manipulatives classrooms. School
Science and Mathematics, 104(1), 16-31.
NCTM (1989). Curriculum and Evaluation Standards for School
Mathematics. Reston, VA:Author.
NCTM (1991). Professional Standards for Teaching
Mathematics. Reston, VA:Author.
NCTM (1995). Assessment Standards for School Mathematics.
Reston, VA:Author.
Noddings, N. (1992). Professionalization and mathematics
teaching. In D. A. Grouws (Ed.), Handbook of research on
mathematics teaching and learning (pp. 209-239). New
York:Macmillan.
Prigge, G. R. (1978). The differential effects of the use
of manipulative aids on the learning of geometric
concepts by elementary school children. Journal for
Research in Mathematics Education, 9, 361-367.
Raphael, D., & Wahlstrom, M. (1989). The influence of
instructional aids on mathematics achievement. Journal
for Research in Mathematics Education, 20(2), 173-190.
Raymond, A. M. (1997). Inconsistency between a beginning
elementary school teacher’s mathematics beliefs and
teaching practice. Journal for Research in Mathematics
Education, 28(5), 550-576.
Richardson, V., & Placier, P. (2001). Teacher change. In V.
Richardson (Ed.), Handbook of research on teaching (4th
ed.)(pp. 905-947). Washington:American Educational
Research Association.
Rosenshine, B. (1970). Evaluation of classroom instruction.
Review of Educational Research, 40(2), 279-300.
Rosenshine, B., & Furst, N. (1973). The use of direct
observation to study teaching. In R. M. W. Travers (Ed.)
, Second handbook of research on teaching (pp. 122-183).
Chicago:Rand McNally.
Senger, E. S. (1999). Reflective reform in mathematics:
The recursive nature of teacher change. Educational
Studies in Mathematics, 37, 199-221.
Shavelson, R. J., & Stern, P.(1981). Research on teachers’
pedagogical thoughts, judgments, decisions, and behavior.
Review of Educational Research, 51(4), 455-498.
Shulman, L. S. (1986). Those who understand: Knowledge
growth in teaching. Educational Research, 15(2), 4-14.
Shulman, L. S. (1987). Knowledge and teaching: Foundations
of the new reform. Harvard Educational Review,57(1),1-22.
Sowell, E. J. (1989). Effects of manipulative materials in
mathematics instruction. Journal for Research in
Mathematics Education, 20(5), 498-505.
Steinbring, H. (1998). Elements of epistemological
knowledge for mathematical verbal problems. Journal of
Mathematics Teacher Education, 1(2), 157-189.
Strutchen, M. E., Harris, K. A., & Martin, W. G. (2001).
Assessing geometric and measurement understanding using
manipulatives. Mathematics Teaching in the Middle School
, 6(7), 402-405.
Suydam, M. N. (1983). Geometry. In D. J. Dessart, & M. N.
Suydam (Eds), Classroom ideas from research on secondary
school mathematics (pp. 65-122). Reston, VA:National
Council of Teachers of Mathematics.
Suydam, M. N. (1985). The shape of instruction in geometry
:Some highlights from research. Mathematics Teacher, 78,
481-486.
Swafford, J. O., Jones, G., & Thornton, C. A. (1977).
Increased knowledge in geometry and instructional
practice. Journal for Research in Mathematics Education,
28(4), 467-483.
Thompson, A. G. (1992). Teachers’ beliefs and conceptions:
A synthesis of the research. In A. Grouws (Ed.),Handbook
of research on mathematics teaching and learning (pp. 127
-146). New York:Macmillan.
Tirosh, D., & Graeber, A. O.(2003).Challenging and changing
mathematics teaching classroom practices. In A. J. Bishop
, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S.
Leung(Eds.),Second international handbooks of mathematics
education(pp.643-687).Boston:Kluwer Academic Publishers.
Tzur, R. (2001). Becoming mathematics teacher-educator:
Conceptualizing the terrain through self-reflective
analysis. Journal of Mathematics Teacher Education, 4,
259-283.
Usiskin, Z. (1987). Resolving the continuing dilemmas in
school geometry. In M. M. Lindquist, & A. P. Shulte
(Eds.), Learning and teaching geometry, K-12:1987
yearbook (pp. 17-31). Reston, VA : National Council of
Teachers of Mathematics.
van Hiele, P. M. (1999). Developing geometric thinking
through activities that begin with play. Teaching
Children Mathematics, 5(6), 310.
Wheatley, G. H. (1990). Spatial sense and mathematics
learning. The Arithmetic Teacher, 37(6), 10-11.
Williams, J. (2002). Geometric reasoning and spatial sense
in context. Australian Primary Mathematics Classroom, 7
(2), 30-32.
Wilson, M., & Cooney, T. (2002). Mathematics teacher change
and development. In G. C. Leder, E. Pehkonen, & G.
Torner (Eds.), Beliefs:A hidden variable in mathematics
education? (pp. 127-147). Boston:Kluwer Academic
Publishers.
Wilson, S. M., Shulman, L. S., & Richert, A. E.(1987). 150
different ways’of knowing: Representations of knowledge
in teaching. In J. Calderhead (Ed.),Exploring teachers’
thinking (pp. 104-124). London:Cassell.
Wohlhuter, K. A.(1998). Geometry classroom pictures:What's
developing?The Mathematics Teacher , 91(7), 606-609.
Zaslavsky, O., Chapman, O., & Leikin, R.(2003).Professional
development of mathematics educators:Trends and tasks.
In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick
, & F. K. S. Leung (Eds.), Second international handbook
of mathematics education (pp. 877-917). Boston:Kluwer
Academic Publishers.
Zaslavsky, O., & Leikin, R.(2004). Professional development
of mathematics educators:Growth through practice.
Journal of Mathematics Teacher Education, 7, 5-32.