簡易檢索 / 詳目顯示

研究生: 吳品秀
Wu, Pin-Hsiu
論文名稱: 比較專業譯者與終端使用者對ChatGPT翻譯功能的態度
Comparison of the Attitudes of Professional Translators and End Users towards the Translation Function of ChatGPT
指導教授: 廖柏森
Liao, Po-Sen
口試委員: 廖柏森
Liao, Po-Sen
張綺容
Chang, Qi-Rong
汝明麗
Ju, Ming-Li
口試日期: 2024/05/03
學位類別: 碩士
Master
系所名稱: 翻譯研究所
Graduate Institute of Translation and Interpretation
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 272
中文關鍵詞: 機器翻譯生成式語言模型ChatGPT科技接受度模型
英文關鍵詞: machine translation, Generative Pre-trained Transformer, ChatGPT, Technology Acceptance Model
研究方法: 調查研究半結構式訪談法
DOI URL: http://doi.org/10.6345/NTNU202400487
論文種類: 學術論文
相關次數: 點閱:191下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2022年問世的生成式語言模型ChatGPT經常被大眾作為翻譯工具使用。而專業譯者與終端使用者使用機器翻譯系統的情境與目的可能不同,或許也會導致兩族群對ChatGPT翻譯功能的態度與接受度產生差異。本文旨在探討譯者與終端使用者使用ChatGPT翻譯功能的態度及使用意圖,研究結合Davis(1989)提出的第一版科技接受度模型及Venkatesh與Davis(2000)之第二版科技接受度模型為基礎,進行問卷調查及半結構式訪談。問卷結果顯示,大多數的譯者及終端使用者均使用過此模型的翻譯功能,而使用過此功能的使用者擁有較高的使用意圖,譯者多利用此模型產出之譯文以大致了解原文內容,終端使用者則是為了閱讀外語文本而使用。此外,使用者對ChatGPT翻譯功能的信任度會因不同語言組合及輔助功能而有所差異。兩族群的質性訪談顯示,終端使用者更傾向認為譯者會被AI取代,但此族群對翻譯產業的了解程度相對有限,多從效率與成本層面看待此議題。而譯者則更擔憂大眾對翻譯專業低估,可能對整個翻譯產業帶來惡性循環。儘管意識到生成式語言模型對翻譯產業的衝擊,多數譯者仍抱持相對樂觀的態度,認為譯者以開放心態擁抱新科技,方能於勢不可擋的AI浪潮中成功存活。

    ChatGPT, a generative language model released in 2022, is frequently used as a translation tool. However, professional translators and end-users employ machine translation systems in distinct contexts and for different purposes, which may lead to contrasting attitudes and acceptance levels towards ChatGPT's translation functions. This study aims to explore the attitudes and intentions of translators and end-users toward the translation function of ChatGPT. Grounded in Davis' (1989) TAM and Venkatesh and Davis' (2000) TAM2, the research employed a combination of questionnaires and semi-structured interviews. Survey findings revealed that the vast majority of both translators and end-users have utilized the translation function of this model. Moreover, participants with prior usage experience demonstrated higher usage intentions. Translators primarily utilized the model's output for general comprehension of source texts, while end-users employed it for reading foreign language documents. The study also found that user trust in ChatGPT's translation capabilities varied depending on language combinations and auxiliary functions. Qualitative interviews with both groups suggest that end-users were more inclined to believe translators will be replaced by AI. However, this group exhibited a relatively limited understanding of the industry, often approaching the issue from an efficiency and cost perspective. In contrast, translators are more concerned about the public's underestimation of the translation profession, which could potentially lead to a negative spiral for the entire industry. Despite acknowledging the impact of generative language models on the translation industry, most translators maintained a relatively optimistic outlook, emphasizing that embracing new technologies with an open mind is crucial for survival in the inevitable AI wave.

    謝辭 i 摘要 ii Abstract iii 目次 iv 表次 vi 圖次 ix 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的與問題 4 第三節 論文章節概述 4 第二章 文獻回顧 6 第一節 機器翻譯的歷史 6 第二節 聊天機器人的歷史 10 第三節 科技接受度模型 12 第四節 譯者對機器翻譯之態度研究 18 第五節 終端使用者對機器翻譯之態度研究 24 第六節 譯者與終端使用者對機器翻譯之態度研究及相關變項 26 第三章 研究方法 35 第一節 研究問題 35 第二節 研究架構 35 第三節 研究對象 36 第四節 研究工具 37 第五節 前導測試 38 第六節 半結構式訪談 39 第四章 研究結果與討論 42 第一節 問卷信度分析 42 第二節 研究受測者背景資料描述性分析 43 第三節 不同基本背景受測者的ChatGPT翻譯功能接受度與外部變項差異 50 第四節 外部變項與科技接受度模式之相關性分析 74 第五節 質性訪談分析 106 第五章 結論與建議 115 第一節 研究發現 115 第二節 研究貢獻 118 第三節 研究限制與未來研究建議 118 參考文獻 122 附錄 131 附錄一 前導測試問卷 131 附錄二 前導測試受訪者意見與問卷題目修訂 139 附錄三 訪談同意書 141 附錄四 不同翻譯產業/領域之自覺易用性Dunn事後分析表 142 附錄五 訪談逐字稿示例 144

    王柏鈞(2020年2月14日)。〈DNN(深度神經網路)的全面認識〉。Medium。https://medium.com/機器學習知識歷程/dnn-深度神經網路-的全面認識-ad50aa531205
    陳珮榆(譯)(2023)。一個經濟學家的AI觀點。臺北市:好優文化。(Roger B., 2021)
    芮嘉瑋(2021年5月26日)。〈深度學習神經網路之運作〉。北美智權報。http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_210526_0706.htm
    唐瑄(2022)。《翻譯研究所學生使用機器翻譯之意圖與接受度初探—以全臺翻譯研究所學生為例》(未出版之碩士論文)。國立臺灣師範大學。
    高重建(2021年9月30日)。〈[神經機器翻譯理論與實作] 你只需要專注力(I): Attention Mechanism〉。iT邦幫忙。https://ithelp.ithome.com.tw/articles/10274997
    高重建(2023年3月16日)。〈ChatGPT vs 專業翻譯:質量相若,效率千倍,成本十萬分之一〉。關鍵評論網。https://www.thenewslens.com/article/182547/fullpage
    高翊祥(2018年1月8日)。〈教電腦寫作:AI球評——Seq2seq模型應用筆記(PyTorch + Python3) 〉。Medium。https://gau820827.medium.com/%E6%95%99%E9%9B%BB%E8%85%A6%E5%AF%AB%E4%BD%9C-ai%E7%90%83%E8%A9%95-seq2seq%E6%A8%A1%E5%9E%8B%E6%87%89%E7%94%A8%E7%AD%86%E8%A8%98-pytorch-python3-31e853573dd0
    陳奕廷(2016年12月13日)。〈機器學習與人工神經網路(二):深度學習(Deep Learning)〉。Case報科學。https://case.ntu.edu.tw/blog/?p=26340
    Adamopoulou, E., & Moussiades, L. (2020). An overview of chatbot technology. https://doi.org/10.1007/978-3-030-49186-4_31
    Al-Maroof, R. S., Salloum, S. A., Mohammad Alhamadand, A. Q., & Shaalan, K. (2020). Understanding an extension technology acceptance model of google translation: A multi-cultural study in United Arab Emirates. International Journal of Interactive Mobile Technologies (iJIM), 14, 157-178. https://doi.org/10.3991/ijim.v14i03.11110
    Baek, T. H., & Kim, M. (2023). Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telematics and Informatics, 83. https://doi.org/https://doi.org/10.1016/j.tele.2023.102030
    Baek, T. H., & Morimoto, M. (2012). Stay away from me. Journal of Advertising, 41(1), 59-76. https://doi.org/10.2753/JOA0091-3367410105
    Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus Phrase-based Machine Translation Quality: A Case Study. 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas.
    Bowker, L. (2020). Translation technology and ethics. In K. Koskinen & N. K. Pokorn (Eds.), The Routledge Handbook of Translation and Ethics (pp. 262-278). Routledge.
    Briva-Iglesias, V., O’Brien, S., & Cowan, B. R. (2023). The impact of traditional and interactive post-editing on Machine Translation User Experience, quality, and productivity. Translation, Cognition & Behavior.
    Buabeng-Andoh, C. (2018). Predicting students’ intention to adopt mobile learning: A combination of theory of reasoned action and technology acceptance model. Journal of Research in Innovative Teaching & Learning, 11(2), 178-191.
    Cadwell, P., Castilho, S., O'Brien, S., & Mitchell, L. (2016). Human factors in machine translation and post-editing among institutional translators. Translation Spaces, 5(2), 222-243. https://doi.org/https://doi.org/10.1075/ts.5.2.04cad
    Cadwell, P., O’Brien, S., & Teixeira, C. S. C. (2018). Resistance and accommodation: Factors for the (non-) adoption of machine translation among professional translators. Perspectives, 26(3), 301-321.
    Camilleri, M. A., & Falzon, L. (2021). Understanding motivations to use online streaming services: integrating the technology acceptance model (TAM) and the uses and gratifications theory (UGT). Spanish Journal of Marketing - ESIC, 25(2), 217-238. https://doi.org/10.1108/SJME-04-2020-0074
    Castilho, S., & O'Brien, S. (2017). Acceptability of machine-translated content: A multi-language evaluation by translators and end-users. Linguistica Antverpiensia, New Series–Themes in Translation Studies, 16. https://doi.org/https://doi.org/10.52034/lanstts.v16i0.430
    Choudhury, A., & Shamszare, H. (2023). Investigating the impact of user trust on the adoption and use of ChatGPT: Survey analysis [Original Paper]. J Med Internet Res, 25. https://doi.org/10.2196/47184
    Cronin, M. (2013). Translation and globalization. Routledge.
    Daems, J. (2022). Dutch literary translators’ use and perceived usefulness of technology: The role of awareness and attitude. In Using technologies for creative-text translation. Routledge. https://doi.org/10.4324/9781003094159-3
    Daems, J., Vandepitte, S., Hartsuiker, R. J., & Macken, L. (2017). Identifying the machine translation error types with the greatest impact on post-editing effort. Frontiers in Psychology, 8, 1282. https://doi.org/https://doi.org/10.3389/fpsyg.2017.01282
    Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results Massachusetts Institute of Technology].
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319-340. https://doi.org/10.2307/249008
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982-1003. https://doi.org/10.1287/mnsc.35.8.982
    DePalma, D. A. (2017). Augmented translation powers up language services. Retrieved 4/30 from https://csa-research.com/Blogs-Events/Blog/Augmented-Translation-Powers-up-Language-Services
    Doherty, S., & O'Brien, S. (2014). Assessing the usability of raw machine translated output: A user-centered study using eye tracking. International Journal of Human–Computer Interaction, 30(1), 40-51. https://doi.org/10.1080/10447318.2013.802199
    Dorst, A., Valdez, S., & Jongste, D. (2023). Professional translators’ and project managers’ perceptions of machine translation and post-Editing [Conference session]. Conference New Trends in Translation and Technology, Rhodes Island, Greece. https://tinyurl.com/57dxejkh
    Eysenbach, G. (2023). The role of ChatGPT, generative language models, and artificial intelligence in medical education: A conversation with ChatGPT and a call for papers [Editorial]. JMIR Med Education, 9. https://doi.org/10.2196/46885
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and Behaviour: An introduction to theory and research (Vol. 27). Addison-Wesley.
    Freire, S. K., Wang, C., & Niforatos, E. (2024). Chatbots in knowledge-intensive contexts: Comparing intent and LLM-based systems.
    Ghazizadeh, M., Lee, J., & Boyle, L. (2012). Extending the technology acceptance Model to assess automation. Cognition, Technology & Work, 14, 39-49. https://doi.org/10.1007/s10111-011-0194-3
    Gilson, A., Safranek, C. W., Huang, T., Socrates, V., Chi, L., Taylor, R. A., & Chartash, D. (2023). How does ChatGPT perform on the United States Medical Licensing Examination? The implications of large language models for medical education and knowledge assessment. JMIR Med Education, 9. https://doi.org/10.2196/45312
    Glanz, K., Rimer, B. K., & Viswanath, K. (2008). Health behavior and health education: theory, research, and practice. John Wiley & Sons.
    Goli, M., Sahu, D. A., Bag, S., & Dhamija, P. (2023). Users' acceptance of artificial intelligence-based chatbots: An empirical study. International Journal of Technology and Human Interaction, 19(1), 1-18. https://doi.org/10.4018/IJTHI.318481
    Guerberof Arenas, A. (2008). Productivity and quality in the post-editing of outputs from translation memories and machine translation. Localisation Focus The International Journal of Localisation, 7(1), 11-21.
    Guerberof Arenas, A. (2013). What do professional translators think about post-editing. JoSTrans The journal of specialised translation, 19, 75-95.
    Hearne, M., & Way, A. (2011). Statistical machine translation: A guide for linguists and translators. Language and Linguistics Compass, 5(5), 205-226. https://doi.org/https://doi.org/10.1111/j.1749-818X.2011.00274.x
    Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. https://doi.org/https://doi.org/10.1016/j.jbi.2009.07.002
    Kasperė, R., Horbačauskienė, J., Motiejūnienė, J., Liubinienė, V., Patašienė, I., & Patašius, M. (2021). Towards sustainable use of machine translation: usability and perceived quality from the end-user perspective. Sustainability, 13(23), 13430.
    Kasperė, R., Motiejūnienė, J., Patasienė, I., Patašius, M., & Horbačauskienė, J. (2023). Is machine translation a dim technology for its Users? An eye tracking study. Front Psychol, 14, 1076379. https://doi.org/10.3389/fpsyg.2023.1076379
    Moorkens, J., O’brien, S., Da Silva, I. A., de Lima Fonseca, N. B., & Alves, F. (2015). Correlations of perceived post-editing effort with measurements of actual effort. Machine Translation, 29, 267-284.
    Mostafa, R. B., & Kasamani, T. (2022). Antecedents and consequences of chatbot initial trust. European Journal of Marketing, 56(6), 1748-1771. https://doi.org/10.1108/EJM-02-2020-0084
    Munday, J. (2016). Introducing translation studies: Theories and applications. Routledge. https://doi.org/https://doi.org/10.4324/9781315691862
    Nirenburg, S., Somers, H. L., & Wilks, Y. (2003). ALPAC: The (in)famous report. In Readings in Machine Translation (pp. 131-135). MIT Press. http://ieeexplore.ieee.org/document/6283768
    Nunnally, J. C. (1967). Psychometric theory. McGraw-Hill.
    O’Hagan, M. (2013). The impact of new technologies on translation studies: A technological turn? Routledge.
    Olohan, M. (2011). Translators and translation technology: The dance of agency. Translation Studies, 4(3), 342-357. https://doi.org/10.1080/14781700.2011.589656
    Pickering, A. (1993). The mangle of practice: Agency and emergence in the sociology of science. American journal of sociology, 99(3), 559-589.
    Rauniar, R., Rawski, G., Yang, J., & Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6-30. https://doi.org/10.1108/JEIM-04-2012-0011
    Rossetti, A., O'Brien, S., & Cadwell, P. (2020). Comprehension and trust in crises: Investigating the impact of machine translation and post-editing 22nd Annual Conference of the European Association for Machine Translation,
    Rossi, C. (2016). Introducing statistical machine translation in translator training: From uses and perceptions to course design, and back again. Revista Tradumàtica. https://doi.org/10.5565/rev/tradumatica.195
    Rossi, C., & Chevrot, J.-P. (2019). Uses and perceptions of machine translation at the European Commission. Journal of Specialised Translation.
    Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35. https://doi.org/https://doi.org/10.1016/j.compedu.2018.09.009
    Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate sse and interpretation. Anesth Analg, 126(5), 1763-1768. https://doi.org/10.1213/ane.0000000000002864
    Silva, F. A., Shojaei, A. S., & Barbosa, B. (2023). Chatbot-based services: A study on customers' reuse intention. Journal of Theoretical and Applied Electronic Commerce Research, 18(1), 457-474. https://www.mdpi.com/0718-1876/18/1/24
    Sudoh, K., Duh, K., Tsukada, H., Hirao, T., & Nagata, M. (2010, 08/01). Divide and translate: Improving long distance reordering in statistical machine translation. The Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR,
    Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315.
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46, 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
    Vieira, L. N., O’Sullivan, C., Zhang, X., & O’Hagan, M. (2023). Machine translation in society: Insights from UK users. Language Resources and Evaluation, 57(2), 893-914.
    Yang, Y., & Wang, X. (2019). Modeling the intention to use machine translation for student translators: An extension of Technology Acceptance Model. Computers & Education, 133, 116-126. https://doi.org/https://doi.org/10.1016/j.compedu.2019.01.015
    Zhu, Y., Xu, Y., Liu, Q., & Wu, S. (2021). An empirical study of graph contrastive learning. arXiv preprint arXiv:2109.01116.
    Zydroń, A., & Liu, Q. (2017). Measuring the benefits of using SMT. MultiLingual, 28(1), 63–66.

    下載圖示
    QR CODE