簡易檢索 / 詳目顯示

研究生: 李健恆
Lei, Kin Hang
論文名稱: 結合不同學習策略的工作例對理解幾何證明之影響研究
The Effects of Worked-out Examples with Different Strategies on Comprehending Geometry Proof
指導教授: 左台益
Tso, Tai-Yih
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 146
中文關鍵詞: 幾何證明工作例後設認知認知負荷
英文關鍵詞: geometry proof, worked-out example, metacognition, cognitive load
論文種類: 學術論文
相關次數: 點閱:257下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾何證明是發展數學思維和學習演繹推理的重要工具,卻也是學生數學學習的難點之一。工作例是展示數學思維的基本方式,因此尋找合適的學習策略結合工作例來理解幾何證明的內容是值得探討的議題。我們以平行線截比例線段證明做為工作例的內容,在電腦環境下閱讀相關證明後,配合練習或後設認知問題所形成的閱讀學習模組,以檢驗對學生理解幾何證明的影響。本研究選取254位尚未學習幾何演繹證明的八年級學生,使用理解測驗問卷和認知負荷感受量表,分別檢測學生能否理解相關的內容和其學習成效的保留情況,以及學生的認知負荷感受。從學生回答問題的策略檔案中,進一步分析學生的學習過程與理解幾何證明之間的關係。研究結果顯示,使用類似結構的練習策略有助於學生在當下的理解,但卻容易受工作例所產生的原型影響,僅使用模仿改編策略來回答問題;回答後設認知問題對學生來說是較困難的學習任務,但卻能反映學生真正的理解程度且產生較好的保留成效。因此,後設認知問題可以作為幫助學生反思的理想工具,適當搭配練習題的優點相信能有助於學生理解幾何演繹證明的內容。

    Geometry proof is an important tool for the development of the mathematical thinking and the learning deductive reasoning; nevertheless, geometry proof is also one of the learning difficulties for students. Worked-out example is a fundamental approach to demonstrate mathematical thinking. Thus, the topic of finding suitable learning strategies in order to understand geometry proof is worth to discuss. The effects of comprehending geometry proof are detected under using different reading learning modes. Proofs are showed with a computer setting. The reading learning modes are formed by worked-out examples with practices or metacognition questions. The intercept theorem (or Thales' theorem) is used as the presenting content of worked-out examples. 254 eighth grade students who have not learned deductive proof are chosen for this research. Reading comprehension test is used to examine students’ understanding and conservation of learning effects. Students also need to fill out the rating-scale measurement of cognitive load. Furthermore, we investigate the relationship between learning process and comprehending geometry proof from students’ writing files of responding questions. The results show that practice with similar structure of worked-out example is helpful for the instant understanding for students; however, students are affected by the prototype of worked-out examples which tend to use copy-and-adapt strategy for doing practices. On the other hand, learning task combined with metacognition questions are more difficult than practices; however, metacognition questions reflect the students’ level of understanding and provide a better conservation. Hence, metacognition question is an ideal tool which is helpful for the reflection in student learning. It is suggested that proper pair of the metacognition question with the advantage of practices may support students to understand the content of deductive proof.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 5 第二章 文獻探討 7 第一節 閱讀理解與幾何證明 7 第二節 閱讀學習模組構成要素 11 第三節 認知負荷感受 17 第三章 研究方法 23 第一節 研究對象 23 第二節 研究設計 25 第三節 研究工具 26 第四節 研究流程 32 第五節 資料處理與分析 33 第六節 研究限制 41 第四章 研究結果 42 第一節 理解表現 42 第二節 認知負荷感受 60 第三節 理解表現與認知負荷感受之關聯 70 第四節 回答問題策略 73 第五節 理解表現與回答問題表現之關係 88 第五章 結論與建議 97 第一節 結論 97 第二節 建議 99 參考文獻 101 一、中文部分 101 二、英文部分 101 附錄一:幾何證明內容 108 附錄二:學習單 110 附錄三:認知負荷感受量表 116 附錄四:幾何證明理解測驗問卷 117 附錄五:理解測驗評分細則說明 119 附錄六:各練習題知識程度編碼細則說明 125 附錄七:各後設認知問題編碼分類細則說明 133

    一、中文部分
    左台益、呂鳳琳、曾世綺、吳慧敏、陳明璋、譚寧君 (2011)。以分段方式降低任務複雜度對專家與生手閱讀幾何證明的影響。教育心理學報,43(閱讀專刊),291-314。
    呂鳳琳 (2010)。幾何證明不同文本呈現方式對學生認知負荷與閱讀理解影響之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    柯華葳、詹益綾 (2007)。國民中學閱讀推理篩選測驗編製報告。測驗學刊,54(2),429-449。
    康明昌 (2008)。「幾何原本」四百年。數學傳播季刊,32(4),16-29。
    教育部 (2008)。97年國民中小學九年一貫課程綱要數學學習領域。台北:教育部。
    楊凱琳 (2004)。建構中學生對幾何證明閱讀理解的模式(未出版之博士論文)。國立臺灣師範大學,臺北市。
    蘇宜芬、林清山 (1992)。後設認知訓練課程對國小低閱讀能力學生的閱讀理解能力與後設認知能力之影響。教育心理學報,25,245-267。

    二、英文部分
    Anderson, J. R. (1993). Rules of the mind. Mahwah, NJ: Erlbaum.
    Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules in the acquisition of a cognitive skill. Journal of Experimental Psychology: Learning, Memory, & Cognition,23, 932–945.
    Atkinson, R. K. (2005). Multimedia learning of mathematics. In R. Mayer (Ed.), Cambridge handbook of multimedia learning. Cambridge University Press.
    Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. W. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70, 181–214.
    Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal learning. Journal of Educational Psychology, 51(5), 267–272.

    Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education. International Newsletter on the Teaching and Learning of Mathematical Proof. Retrieved September 15, 2011, from http://www.lettredelapreuve.it/OldPreuve/Newsletter/.
    Borasi, R., Siegel, M., Fonzi, J., & Smith, C. F. (1998). Using transactional reading strategies to support sense-making and discussion in mathematics classrooms: An exploratory study. Journal for Research in Mathematics Education, 29(3), 275-305.
    Brown, A. L., Palincsar, A. S., & Armbruster, B. B. (1984). Instructing comprehension-fostering activities in interactive learning situations. In H. Mandl, N. Stein & T. Trabasso (Eds.), Learning and Comprehension of Text. Hillsdale, NJ: Lawrence Erlbam Associates.
    Carroll, W. M. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Psychology, 86, 360-367.
    Catrambone, R. (1996). Generalizing solution procedures learned from examples. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1020-1031.
    Clark, R. C., Nguyen, F., & Sweller, J. (2006). Efficiency in learning: evidence-based guidelines to manage cognitive load. San Francisco: Pfeiffer.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers
    Cross, D. R., & Paris S. (1988). Developmental and instructional analyses of children's metacognition and reading comprehension. Journal of Educational Psychology, 80(2), 131-142.
    Dee-Lucas, D., & Larkin, J. H. (1995). Learning from electronic texts: Effects of interactive overviews for information access. Cognition and Instruction, 13, 431–468.
    Duval, R (1995). Geometrical Pictures: Kinds of Representation and Specific Processings. In R. Sutherland and J. Mason (Eds), Exploiting Mental Imagery with Computers in Mathematics Education. Berlin: Springer.
    Duval, R (1998). Geometry from a Cognitive Point of View. In C. Mammana and V. Villani (Eds), Perspectives on the Teaching of Geometry for the 21st Century: an ICMI study. Dordrecht: Kluwer.
    Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, Volume 61 (1-2), Springer Netherlands.
    Duval, R. (2007). Cognitive Functioning and the understanding of mathematical processes of proof. In Boero, P. (Ed.), Theorems in School: From History, Episetemology and Cognition to Classroom Practice. (pp.137-162). Rotterdam, The Netherlands: Sense Publishers.
    Flavell, J. H. (1976). Metacognition aspects of problem solving. In L. B.
    Flood, J., & Lapp, D. (1990). Reading Comprehension Instruction for At-Risk Students: Research-Based Practices That Make a Difference. Journal of Reading, 33(7), 490-496.
    Hart, S.G. (2006). NASA-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting, 904-908. Santa Monica: HFES.
    Hart, S.G., & Staveland, L.E. (1988). Development of NASA-TLX: results of empirial and theoretical research. In: Hancock, P.A., Meshkati, P. (Eds.), Human Mental Workload. Elsevier, Amsterdam, pp. 139–183.
    Healy, L., & Hoyles, C. (1998). Justifying and proving in school mathematics. Summary of the results from a survey of the proof conceptions of students in the UK. Research Report Mathematical Sciences, Institute of Education, University of London.
    Hilbert, T. S., & Renkl, A. (2009). Learning how to use a computer-based concept-mapping tool: Self-explaining examples helps. Computers in Human Behavior, 25, 267-274.
    Hilbert, T. S., Renkl, A., Schworm, S., Kessler, S., & Reiss, K. (2008). Learning to teach with worked-out examples: A computer-based learning environment for teachers. Journal of Computer-Assisted Learning, 24, 316–332.
    Houdement, C., & Kuzniak, A. (2003). Elementary geometry split into different geometrical paradigms. In M. Mariotti (Ed.), Proceedings of CERME 3, Bellaria, Italy.
    Jacobs, J. E., & Paris, S. G. (1987). Children’s metacognition about reading: Issues in definition, measurement, and instruction. Educational Psychologist, 22, 255-278.

    King, A. (1994). Guiding knowledge construction in the classroom: Effects of teaching children how to question and how to explain. American Educational Research Journal, 31, 338–368.
    Kovalik, C. L., & Williams, M. A. (2011). Cartoons as advance organizers. Journal of Visual Literacy, 30(2), 40-64.
    Kunimune, S., Fujita,T., & Jones, K. (2009). “Why do we have to prove this?” Fostering students’ understanding of ‘proof’ in geometry in lower secondary school. Lin, F.-L., Hsieh, F.-J., Hanna, G. and de Villers, M. (eds.), Proof and proving in mathematics education ICMI study 19 conference proceeding, Vol. 1, pp.256-261.
    Langan-Fox, J., Waycott, J. L., & Albert, K. (2000). Linear and graphic advance organizers: Properties and processing. International Journal of Cognitive Ergonomics, 4(1), 19-34.
    Lin, F. L., Cheng, Y. H., & linfl team (2003). The Competence of Geometric Argument in Taiwan Adolescents. International Conference on Science & Mathematics Learning. 2003.12.16-18。
    Lin, F.-L., & Yang, K.-L. (2007). The reading comprehension of geometric proofs: The contribution of knowledge and reasoning. International Journal of Science and Mathematics Education, 5, 729-754.
    Mayer, R. E. (2009). Introduction to multimedia learning. In R. E. Mayer (Ed.). The Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press.
    Mayer, R. E., & Moreno R. (2010). Techniques That Reduce Extraneous Cognitive Load and Manage Intrinsic Cognitive Load during Multimedia Learning. In J. L. Plass, R. Moreno & R. Brünken (Eds.), Cognitive Load Theory (pp.131-152). New York: Cambridge University Press.
    McNamara, D. S. (2004). SERT: Self-explanation reading training. Discourse Processes, 38, 1-30.
    Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 343–355.
    Moreno, R., & Park, B. (2010). Cognitive load theory: Historical development and relation to other theories. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory (pp. 9-28), New York: Cambridge.
    Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73, 449-471.
    National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA : Author.
    Özsoy, G., & Ataman, A. (2009). The effect of metacognitive strategy training on problem solving achievement. International Electronic Journal of Elementary Education, 1(2), 67–82.
    Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429–434.
    Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4.
    Palincsar, A., & Brown, A. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 117-175.
    Pressley, M., & Afflerbach, P. (1995). Verbal protocols of reading: The nature of constructively responsive reading. Hillsdale, NJ: Lawrence Erlbaum Assoc.
    Reinking, D. (1992). Different Between Electronic and Printed Texts: An Agenda for Research. Journal of Educational Multimedia and Hypermedia, 1(1), 11-24.
    Reinking, D. (2005). Multimedia learning of reading. In R.E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 355-374). New York: Cambridge University Press.
    Renkl, A. (2005). The worked-out-example principle in multimedia learning. In R. Mayer (Ed.), Cambridge Handbook of Multimedia Learning. Cambridge, UK: Cambridge University Press.
    Schoenfeld, A. (1985). Mathematical Problem Solving. New York: Academic Press.
    Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for research in mathematics education. 34(1), 4-36.
    Selden, A., & Selden, J. (2011). Possible reasons for students' ineffective reading of their first-year university mathematics textbooks. Technical Report No. 2011-2. Tennessee Technological University, Cookeville, TN.
    Snow, C. (2002). Reading for understanding: Toward an R&D program in reading comprehension. Arlington, VA: Rand Corporation.
    Steinbring, H. (1989). ‘Routine and meaning in the mathematics classroom’. For the Learning of Mathematics, 9(1), 24-33.
    Steinbring, H. (2002). How do Mathematical Symbols acquire their Meaning? - The Methodology of the Epistemology-based Interaction Research. In H.-G. Weigand (Eds.), Developments in mathematics education in German-speaking countries. Selected Papers from the Annual Conference on Didactics of Mathematics, Bern, 1999 (pp. 113–123). Hildesheim: Franzbecker.
    Steinbring, H. (2006). What makes a sign a mathematical sign? – An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61, 133-162.
    Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.
    Sweller, J., & Cooper, G.A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2(1), 59–89.
    Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-285.
    Trafton, J. G., & Reiser, B. J. (1993). The contribution of studying examples and solving problems to skill acquisition. Proceedings of the 15th Annual Conference of the Cognitive Science Society (pp. 1017–1022). Hillsdale: Lawrence Erlbaum Associates, Inc.
    van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices' learning. Contemporary Educational Psychology, 36, pp. 212–218.
    Weber, K., & Mejia-Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76, 329-344.
    Wileman, R. E. (1993). Visual Communicating. Englewood Cliffs, NJ, Education Technology Publications.
    Wu, H.-H. (1996). The role of Euclidean geometry in high school. Journal of Mathematical Behavior, 15, 221-237.
    Yang, K. L. & Lin, F. L. (2008). A model of reading comprehension of geometry proof. Educational Studies in Mathematics, 67(1), 59-76.
    Yang, K. L. & Lin, F. L. (2009). Designing innovative worksheets for improving reading comprehension of geometry proof. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, C. (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 377–384). Thessaloniki, Greece: PME

    下載圖示
    QR CODE