簡易檢索 / 詳目顯示

研究生: 符中薇
Fu, Chung-Wei
論文名稱: 含對位氯取代五牙基三價鐵超氧錯合物之反應性與動力學研究
Reactivity and Kinetic Study of an Fe(III) Superoxo Complex with a Para-chlorine Substituted N3O2 Ligand
指導教授: 李位仁
Lee, Way-Zen
口試委員: 李位仁
Lee, Way-Zen
王雲銘
Wnag, Yun-Mung
洪政雄
Hung, Chen-Hsiung
廖文峯
Liaw, Wen-Feng
口試日期: 2024/06/07
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 111
中文關鍵詞: 鐵超氧化物鐵超氧化物之動力學分析碳氫鍵活化
英文關鍵詞: Iron(III) Superoxo Complex, Kinetic Study of Iron(III) Superoxo Complex, C‒H bonds Activation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400642
論文種類: 學術論文
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 謝誌 I 中文摘要 II Abstract IV 目錄 VI 表索引 XI 圖索引 XII 第一章 緒論 1 第一節 研究動機與目的 1 第二節 自然界中含鐵中心之酵素 2 1-2.1 單加氧含鐵酵素 Cytochrome P450 2 1-2.2 雙加氧含鐵酵素 Rieske Dioxygenases 4 第三節 非血基質模擬鐵超氧化物 6 第四節 鐵氫過氧化物 OO−H 鍵能探討 8 第五節 非血基質模擬銅超氧化物 10 第六節 金屬超氧化物和氫過氧化物之動力學探討 11 第七節 金屬超氧化物 C−H 鍵活化探討 13 第二章 實驗部分 14 第一節 實驗儀器、藥品及條件 14 2-1.1 實驗儀器 14 2-1.2實驗藥品 16 2-1.3實驗條件 21 第二節 鐵金屬錯合物之合成 22 2-2.1 FeII(BDPClP) 錯合物之合成 22 2-2.2 FeⅢ(BDPClP) 錯合物之製備 23 第三節 反應物及鐵超氧化物反應的製備 24 2-3.1 TEMPOH 之製備 24 2-3.2 TEMPOD 之製備 24 2-3.3 4-Methoxyphenolate 之製備 25 2-3.4 FeIII(BDPClP)(O2•) 與 TEMPOH 之反應 25 2-3.5 FeIII(BDPClP)(O2•) 與 HOTf 之反應 26 2-3.6 FeIII(BDPClP)(OOH) 氧化還原電位測量 26 2-3.7 H2O2 之定量實驗 27 2-3.8 FeIII(BDPClP)(O2•) 與 TEMPOH 反應產物之 EPR 配置 27 2-3.9 FeIII(BDPClP)(O2•) 與 HOTF 反應產物之 EPR 配置 28 2-3.10 FeIII(BDPClP)(O2•) 與 4-NO2-Phenol 反應產物 EPR 配置 28 2-3.11 FeIII(BDPClP)(O2•) 與 4-OMe-Phenol 反應產物 EPR 配置 29 第三章 結果與討論 30 第一節 FeII(BDPClP) 性質探討 30 3-1.1 FeII(BDPClP) 之單晶繞射結構圖 30 3-1.2 FeII(BDPClP) 之 UV-Vis 吸收光譜表徵 32 第二節 FeIII(BDPClP)(O2•) 之反應性及光譜探討 33 3-2.1 FeIII(BDPClP)(O2•) UV-Vis吸收光譜圖 33 3-2.2 FeIII(BDPClP)(O2•) 穩定性探討 34 3-2.3 FeIII(BDPClP)(O2•)與 TEMPOH 之反應探討 35 3-2.4 FeIII(BDPClP)(O2•) 與 TEMPOH 反應之 EPR 光譜探討 36 3-2.5 FeIII(BDPClP)(O2•) 與 TEMPOH/D 反應二級速率常數 38 3-2.6 FeIII(BDPClP)(O2•) 與 TEMPOH 之反應路徑探討 41 3-2.7 FeIII(BDPClP)(O2•) 與 TEMPOH 產物之還原電位 42 3-2.8 FeIII(BDPRP)(OOH) 之還原電位比較 44 3-2.9 FeIII(BDPClP)(O2•) 與 HOTf 之反應探討 46 3-2.10 FeIII(BDPClP)(O2•) 與 HOTf 反應之 EPR 光譜探討 47 3-2.11 FeIII(BDPClP)(O2•)與HOTf反應之pKa計算 49 3-2.12 FeIII(BDPRP)(O2•)與 HOTf 反應之 pKa 值比較 50 3-2.13 FeIII(BDPClP)(OOH) 之 OO−H 鍵能計算 52 3-2.14 M-(OOH) 之 OO−H鍵能比較 53 第三節 FeIII(BDPClP)(O2•) 與不同受質反應之動力學分析 55 3-3.1 FeIII(BDPClP)(O2•) 與 4-R-Phenols (R = OMe, Me, H, Cl) 反應之光譜追蹤與二級速率常數計算 55 3-3.2 FeIII(BDPClP)(O2•) 與 4-R-Phenols (R = CF3, CN, NO2) 反應之光譜追蹤與二級速率常數計算 58 3-3.3 FeIII(BDPClP)(O2•) 與 4-R-Phenols (R = OMe, Me, H, Cl, CF3, CN, NO2) 反應之光譜探討 60 3-3.4 FeIII(BDPClP)(O2•) 與 4-R-Phenols 反應之 Hammett Plot 62 3-3.5 FeIII(BDPClP)(O2•) 之Hammett Plot比較 64 第四節 FeIII(BDPClP)(O2•) 與 4-R-Phenols反應路徑探討 68 3-4.1 FeIII(BDPClP)(O2•) 與 4-Methoxyphenolate 反應 68 3-4.2 偵測H2O2生成 70 3-4.3 FeIII(BDPClP)(O2•) 與 4-R-Phenols 反應之 Marcus Plot 71 3-4.4 FeIII(BDPRP)(O2•) 與 4-OMe-Phenol 反應之 EPR 光譜鑑定 72 3-4.5 FeIII(BDPClP)(O2•) 與 4-OMe-Phenol(H/D) 動力學同位素效應 73 3-4.6 FeIII(BDPClP)(O2•) 與 4-NO2-Phenol 反應之 EPR 光譜鑑定 75 3-4.7 FeIII(BDPClP)(O2•) 與 4-R-Phenols 反應之自由能、pKa、E1/2 77 3-4.8 FeIII(BDPClP)(O2•) 與 4-R-Phenols 反應路徑探討 82 第五節 FeII(BDPClP) 與 2-PPA 催化反應探討 84 3-5.1 FeII(BDPClP) 與 2-PPA 催化反應 84 3-5.2 不同錯合物與 2-PPA 催化反應性比較 87 3-5.3 FeII(BDPClP) 與 2-PPA 催化反應路徑推測 88 第四章 結論與未來展望 89 第一節 結論 89 4-1.1 FeIII(BDPClP)(O2•) 表徵以及 FeIII(BDPClP)(OOH) 鍵能鑑定 89 4-1.2 FeIII(BDPClP)(O2•) 與受質反應路徑探討與推測 90 4-1.3 FeII(BDPClP) 催化反應探討 92 第二節 未來展望 93 4-2.1 FeII(BDPClP) 未來研究目標 93 參考資料 94 附錄 109 FeII(BDPClP) X-Ray 單晶繞射結構及晶體參數 110 GC-MS Calibration Curve 111 GC-MS Acetonephenone Calibration Curve 111

    Peterson, R. L.; Himes, R. A.; Kotani, H.; Suenobu, T.; Tian, L.; Siegler, M. A.; Solomon, E. I.; Fukuzumi, S.; Karlin, K. D., Cupric Superoxo-Mediated Intermolecular C-H Activation Chemistry. J Am Chem Soc. 2011, 133, 1702-1705.
    Zapata-Rivera, J.; Caballol, R.; Calzado, C. J., Comparing the Peroxo/Superoxo Nature of the Interaction Between Molecular O2 and Beta-Diketiminato-Copper and Nickel Complexes. Chem Phys. 2011, 13 (45), 20241-20247.
    Krest, C. M.; Onderko, E. L.; Yosca, T. H.; Calixto, J. C.; Karp, R. F.; Livada, J.; Rittle, J.; Green, M. T., Reactive Intermediates in Cytochrome P450 Catalysis. J Biol Chem. 2013, 288 (24), 17074-17081.
    Hlavica, P., Models and mechanisms of O-O bond activation by cytochrome P450. A Critical Assessment of the Potential Role of Multiple Active Intermediates in Oxidative Catalysis. Eur J Biochem 2004, 271 (22), 4335-4360.
    Dubey, K. D.; Shaik, S., Cytochrome P450-The Wonderful Nanomachine Revealed through Dynamic Simulations of the Catalytic Cycle. Acc Chem Res. 2019, 52 (2), 389-399.
    Lawrence P. W., Mechanism and Applications of Rieske Non-Heme Iron Dioxygenases. Enzyme and Microbial Technology 2022, 31, 577-587.
    Andreini, C.; Putignano, V.; Rosato, A.; Banci, L., The Human Iron-Proteome. Metallomics 2018, 10 (9), 1223-1231.
    Nianios, D.; Thierbach, S.; Steimer, L.; Lulchev, P.; Klostermeier, D.; Fetzner, S.; Nickel Q., A "Promiscuous" Metalloenzyme: Metal Incorporation and Metal Ligand Substitution Studies. BMC Biochem 2015, 16, 101-109.
    Guengerich, F. P.; Waterman, M. R.; Egli, M., Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci. 2016, 37 (8), 625-640.
    Michal O. ; Karel B.; Pavel A., Is There a Relationship Between the Substrate Preferences and Structural Flexibility of Cytochromes P450? Current Drug Metabolism 2012, 13, 130-142.
    Sarmistha C.; Rachel N. A.; Dayi D.; John T. G.; John D. L., Radical Intermediates in Monooxygenase Reactions of Rieske Dioxygenases. J. Am. Chem. Soc. 2007, 129, 3514-3515.
    Ferraro, D. J.; Gakhar, L.; Ramaswamy, S., Rieske Business: Structure-Function of Rieske Non-Heme Oxygenases. Biochem Biophys Res Commun. 2005, 338 (1), 175-190.
    Barry, S. M.; Challis, G. L., Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases. ACS Catal. 2013, 3 (10), 2362-2370.
    Chen, J.; Zhang, J.; Sun, Y.; Xu, Y.; Yang, Y.; Lee, Y. M.; Ji, W.; Wang, B.; Nam, W.; Wang, B., Mononuclear Non-Heme Manganese-Catalyzed Enantioselective cis-Dihydroxylation of Alkenes Modeling Rieske Dioxygenases. J. Am. Chem. Soc. 2023, 145 (50), 27626-27638.
    Hartmuth C. K.; Michael S. V.; Barry K. S., Catalytic Asymmetric Dihydroxylation. Chem. Rev. 1994, 94, 2483-2547.
    Wang, Y.; Li, J.; Liu, A., Oxygen Activation by Mononuclear Nonheme Iron Dioxygenases Involved In The Degradation of Aromatics. J. Biol. Inorg. Chem. 2017, 22 (2), 395-405.
    Csizi, K. S.; Eckert, L.; Brunken, C.; Hofstetter, T. B.; Reiher, M., The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022, 28 (16), 3937-3945.
    Chiang, C. W.; Kleespies, S. T.; Stout, H. D.; Meier, K. K.; Li, P. Y.; Bominaar, E. L.; Que, L.; Jr.; Münck, E.; Lee, W. Z., Characterization of a Paramagnetic Mononuclear Nonheme Iron-Superoxo Complex. J .Am. Chem. Soc. 2014, 136, 10846−10849.
    Stout, H. D.; Kleespies, S. T.; Chiang, C. W.; Lee, W. Z.; Que, L. Jr.; Münck, E.; Bominaar, E. L., Spectroscopic and Theoretical Study of Spin-Dependent Electron Transfer in an Iron(III) Superoxo Complex. Inorg. Chem. 2016, 55, 5215−5226.
    江建偉,C2-對稱脯胺酸衍生之鎳錯合物於超氧化物歧化酶之活性模擬及其於硫硫醇共軛加成反應之應用,國立臺灣師範大學化學研究所碩士論文,2012。
    Schatz, M.; Raab, V.; Foxon, S. P.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S., Combined spectroscopic evidence for a persistent end-on copper superoxo complex. Angew Chem Int Ed Engl. 2004, 43 (33), 4360-4363.
    Toryn D.; Teresa F.; Frank G., C–H Activation: Toward Sustainability and Applications. ACS Cent. Sci. 2021, 7 (2), 245–261.
    Noodleman L.; Peng C.Y.; Case D.A.; Mouesca L-M., Orbital Interactions, Electron Delocalization and Spin Coupling in Iron-Sulfur Clusters. Coordination Chemistry Reviews. 1995, 144, 199-244.
    Kim, H.; Rogler, P. J.; Sharma, S. K.; Schaefer, A. W.; Solomon, E. I.; Karlin, K. D., Heme-FeIII Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: FeIII-O2• Complex H-Atom Abstraction Reactivity. J. Am. Chem. Soc. 2020, 142 (6), 3104–3116.
    Gordon, J. B.; Albert, T.; Yadav, S.; Thomas, J.; Siegler, M. A.; Moënne-Loccoz, P.; Goldberg, D. P., Oxygen Versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O2 Binding, and H‑Atom Abstraction Reactivity. Inorg. Chem. 2023, 62, 392−400.
    Wise, C. F.; Agarwal, R. G.; Mayer, J. M., Determining Proton-Coupled Standard Potentials and X−H Bond Dissociation Free Energies in Nonaqueous Solvents Using Open-Circuit Potential Measurements. J. Am. Chem. Soc. 2020, 142, 10681−10691.
    Kim, H.; Rogler, P. J.; Sharma, S. K.; Schaefer, A. W.; Solomon, E. I.; Karlin, K. D., Ferric Heme Superoxide Reductive Transformations to Ferric Heme(Hydro) Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H-Atom Transfer (HAT). Angew. Chem. Int. Ed. 2021, 60, 5907–5912.
    Chen, H.; Cho, K. B.; Lai, W.; Nam, W.; Shaik, S., Dioxygen Activation by a Non-Heme Iron(II) Complex: Theoretical Study toward Understanding Ferric-Superoxo Complexes. J Chem Theory Comput 2012, 8 (3), 915-926.
    Kim, H., Rogler, P. J., Sharma, S. K., Schaefer, A. W., Solomon, E. I., & Karlin, K. D. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro) Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H‐Atom Transfer (HAT). Angewandte Chemie International Edition, 2021, 133 (11), 5972-5977.
    Bailey, W. D.; Gagnon, N. L.; Elwell, C. E.; Cramblitt, A. C.; Bouchey, C. J.; Tolman, W. B., Revisiting the Synthesis and Nucleophilic Reactivity of an Anionic Copper Superoxide Complex. Inorg Chem. 2019, 58 (8), 4706-4711.
    Kim, B.; Jeong, D.; Cho, J., Nucleophilic Reactivity of Copper(ii)-Alkylperoxo Complexes. Chem Commun. 2017, 53 (67), 9328-9331.
    Nag, S. S.; Mukherjee, G.; Barman, P.; Sastri, C. V., Influence of Induced Steric on the Switchover Reactivity of Mononuclear Cu(II)-Alkylperoxo Complexes. Inorganica Chimica Acta. 2019, 485, 80-85.
    Mao, Z.; Campbell, C. T., Kinetic Isotope Effects: Interpretation and Prediction Using Degrees of Rate Control. ACS Catalysis 2020, 10 (7), 4181-4192.
    Cho, J.; Jeon, S.; Wilson, S. A.; Liu, L. V.; Kang, E. A.; Braymer, J. J.; Lim, M. H.; Hedman, B.; Hodgson, K. O.; Valentine, J. S.; Solomon, E. I.; Nam, W., Structure and Reactivity of a Mononuclear Non-heme Iron(III)-Peroxo Complex. Nature 2011, 478 (7370), 502-505.
    Nam, W.; Lee, Y. M.; Fukuzumi, S., Tuning Reactivity and Mechanism in Oxidation Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes. Acc Chem Res. 2014, 47 (4), 1146-54.
    Liu, T.; Tyburski, R.; Wang, S.; Fernandez-Teran, R.; Ott, S.; Hammarstrom, L., Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free Energy- and Pressure-Dependent Kinetics. J. Am. Chem. Soc. 2019, 141 (43), 17245-17259.
    Zhu, W.; Jang, S.; Xiong, J.; Ezhov, R.; Li, X. X.; Kim, T.; Seo, M. S.; Lee, Y. M.; Pushkar, Y.; Sarangi, R.; Guo, Y.; Nam, W., A Mononuclear Non-heme Iron(III)-Peroxo Complex with an Unprecedented High O-O Stretch and Electrophilic Reactivity. J. Am. Chem. Soc. 2021, 143 (38), 15556-15561.
    Hammet L. P., Some Relations Between Reaction Rates And Equilibrium Constants. Chem. Rev. 1935, 17 (1), 125–136.
    Hammett L. P., The Effect of Structure upon the Reactions of Organic Compounds Benzene Derivatives. J. Am. Chem. Soc. 1937, 59 (1), 96–103.
    Cho, J.; Woo, J.; Nam, W., A Chromium(III)−Superoxo Complex in Oxygen Atom Transfer Reactions as a Chemical Model of Cysteine Dioxygenase. J. Am. Chem. Soc. 2012, 134, 11112−11115.
    Jeong, D.; Kim, H.; Cho, J., Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C-H Bond Activation. J. Am. Chem. Soc. 2023, 145 (2), 888-897.
    Simas, A. B. C.; Pereira, V. L. P.; Barreto Jr., C. B.; de Sales, D. L.; de Carvalho, L. L., An Expeditious and Consistent Procedure for Tetrahydrofuran (THF) Drying and Deoxygenation by the Still Apparatus. Quim. Nova. 2009, 32 (9), 2473-2475.
    Zhang, Y.-X.; Du, D.-M.; Chen, X.; Lü, S.-F.; Hua, W.-T., Enantiospecific Synthesis of Pyridinylmethyl Pyrrolidinemethanols and Catalytic Asymmetric Borane Eeduction of Prochiral Ketones. Tetrahedron: Asymmetry 2004, 15, 177-182.
    Park, J. K.; Lee, H. G.; Bolm, C.; Kim, B. M., Asymmetric Diethyl and Diphenylzinc Additions to Aldehydes by Using a Fluorine-Containing Chiral Amino Alcohol: A Striking Temperature Effect on the Enantioselectivity, a Minimal Amino Alcohol Loading, and an Efficient Recycling of the Amino Alcohol. Chem. Eur. J. 2005, 11, 945-950.
    Mader, E. A.; Larsen, A. S.; Mayer, J. M. Hydrogen Atom Transfer from Iron(II)−Tris[2,2‘-bi(tetrahydropyrimidine)] to TEMPO: A Negative Enthalpy of Activation Predicted by the Marcus Equation. J. Am. Chem. Soc. 2004, 126, 8066-8067.
    Mair, R. D.; Graupner, A. J., Determination of Organic Peroxides by Iodine Liberation Procedures. Anal. Chem. 1964, 36, 194-204.
    Das, D.; Lee, Y. M.; Ohkubo, K.; Nam, W.; Karlin, K. D.; Fukuzumi, S. Acid-Induced Mechanism Change and Overpotential Decrease in Dioxygen Reduction Catalysis with a Dinuclear Copper Complex. J. Am. Chem. Soc. 2013, 135, 4018-4026.
    陳昇甫,非血基質三價鐵超氧化及過氧氫化物之合成與反應性,國立臺灣師範大學化學研究所碩士論文,2020。
    陳希,非血基質三價鐵超氧化物之光譜與動力學研究,國立臺灣師範大學化學研究所碩士論文,2022。
    Nathalie R.; Véronique B.; Jalila S.; Sylvie L.; Martine N.; Keiji M.; Frédéric B.; Elodie A-M.; Jean-Jacques G., Bio-Inspired Iron Catalysts for Degradation of Aromatic Pollutants and Alkane Hydroxylation. C. R. Chimie, 2002, 5, 99–109.
    林信諺,配位三氟甲基修飾之三氮二氧配基的三價鐵超氧化物之反應性及光譜探討,國立臺灣師範大學化學研究所碩士論文,2023。
    錢雨達,非血基質三價鐵超氧化物之鑑定與反應性探討,國立臺灣師範大學化學研究所碩士論文,2022。
    陳鴻宇,三級丁基修飾三價鐵超氧錯合物之鍵能、化學動力學及取代基效應比較,國立臺灣師範大學化學研究所碩士論文,2023。
    Wightman R. M., Probing Cellular Chemistry in Biological Systems with Microelectrodes. Science, 2006, 311, 1570-15744.
    Richard S. N.; Irving S., Theory of Stationary Electrode Polarography Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Analytical Chemistry, 1964, 36 (4), 706-723.
    He. J. G.; Li. Y.; Xue. X. X.; Ru. H. Q.; Huang. X.W.; Yang. H., Cyclic Voltammetry Study of Ce(IV)/Ce(III) Redox Couple and Ce(IV)-F Complex in Sulfric Acid Medium. Metalurgija, 2016, 55 (4), 687-690.
    Richard S. N., Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Analytical Chemistry, 1965, 37 (11), 1351-1355.
    葉泉宏,三氮二氧配位基具三級丁基或氫取代基三價鐵超氧錯合物之碳氫鍵活化研究,國立臺灣師範大學化學研究所碩士論文,2023。
    林碩彥,非血基質三價鈷超氧化物搭配氯取代之五配位配位基的合成與反應性,國立臺灣師範大學化學研究所碩士論文,2023。
    簡君仰,三價鐵超氧化物之反應性、熱力學及中間體探討,國立臺灣師範大學化學研究所碩士論文,2021。
    Kindermann, N.; Gunes, C. J.; Dechert, S.; Meyer, F., Hydrogen Atom Abstraction Thermodynamics of a μ-1,2-Superoxo Dicopper(II) Complex. J. Am. Chem. Soc. 2017, 139 (29), 9831-9834.
    Bailey, W. D.; Dhar, D.; Cramblitt, A. C.; Tolman, W. B., Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Reactions of Phenols with a Copper Superoxide Complex. J. Am. Chem. Soc. 2019, 141 (13), 5470-5480.
    Gordon, J. B.; Vilbert, A. C.; Siegler, M. A.; Lancaster, K. M.; Moenne-Loccoz, P.; Goldberg, D. P., A Nonheme Thiolate-Ligated Cobalt Superoxo Complex: Synthesis and Spectroscopic Characterization, Computational Studies, and Hydrogen Atom Abstraction Reactivity. J Am Chem Soc 2019, 141 (8), 3641-3653.
    Mondal, P.; Ishigami, I.; Gerard, E. F.; Lim, C.; Yeh, S. R.; de Visser, S. P.; Wijeratne, G. B., Proton-Coupled Electron Transfer Reactivities of Electronically Divergent Heme Superoxide Intermediates: A Kinetic, Thermodynamic, and Theoretical Study. Chem. Sc.i 2021, 12 (25), 8872-8883.
    Fukuzumi, S.; Lee, Y. M.; Nam, W., Structure and Reactivity of the First-Row D-Block Metal-Superoxo Complexes. Dalton Trans. 2019, 48, 9469-9489.
    林延壕,單核錳金屬超氧錯合物 : 合成、鑑定及其反應性,國立臺灣師範大學化學研究所碩士論文,2020。
    Michael H. A.; Priscilla L. G.; David V. P.; Philip P. D., A Scale of Solute Hydrogen-bond Acidity based on log K Values for Complexation in Tetrachloromethane. J. Chem. Soc., Perkin Trans. 1989, 2, 699-711.
    Dhar, D.; Yee, G. M.; Markle, T. F.; Mayer, J. M.; Tolman, W. B., Reactivity of the Copper(iii)-Hydroxide Unit with Phenols. Chem. Sci. 2017, 8 (2), 1075-1085.
    Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I., Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O2 Model Systems to Organometallic Transformations. Chem. Rev. 2019, 119 (4), 2954-3031.
    崔鈺君,以新穎配位基合成錳-氧加成物及其對 9,10-Dihydroanthracene 的催化探討,國立臺灣師範大學化學研究所碩士論文,2020。
    Winslow, C.; Lee, H. B.; Field, M. J.; Teat, S. J.; Rittle, J., Structure and Reactivity of a High-Spin, Nonheme Iron(III)- Superoxo Complex Supported by Phosphinimide Ligands. J. Am. Chem. Soc. 2021, 143 (34), 13686-13693.
    Barman, P.; Upadhyay, P.; Faponle, A. S.; Kumar, J.; Nag, S. S.; Kumar, D.; Sastri, C. V.; de Visser, S. P., Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction. Angew. Chem. Int Ed. Engl. 2016, 55 (37), 11091-11095.
    Pirovano, P.; Magherusan, A. M.; McGlynn, C.; Ure, A.; Lynes, A.; McDonald, A. R., Nucleophilic Reactivity of a Copper(II)-Superoxide Complex. Angew. Chem. Int. Ed. Engl. 2014, 53 (23), 5946-5950.
    張以瑄,具三氮二氧配位基之三價鐵超氧化物對 9,10-二氫吖啶催化及對酚類受質之動力學探討,國立臺灣師範大學化學研究所碩士論文,2024。
    Braet, F.; Vanbesien, J.; De Zanger, R.; Wisse, E., Ageing of the Liver Sieve and Pseudocapillarisation. Lancet 2002, 360 (9340), 1171-2.
    Emmanuel D. R.; Dhan L. F.; Wayne S.; Rafael H. M.; Zappi E., Adsorption Kinetic Modeling Using Pseudo-first Order and Pseudo-second Order Rate Laws: A review. Cleaner Engineering and Technology,2020, 1, 100032-100045.
    Waskasi, M. M.; Kodis, G.; Moore, A. L.; Moore, T. A.; Gust, D.; Matyushov, D. V., Marcus Bell-Shaped Electron Transfer Kinetics Observed in an Arrhenius Plot. J Am Chem Soc 2016, 138 (29), 9251-9257.
    David N. S., Marcus rate theory applied to enzymatic proton transfer. Biochimica et Biophysica Acta 1999, 1458(2000), 88-103.
    Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L., Researches on Acetylenic Compounds. Part I. The Preparation of Acetylenic Ketones by Oxidation of Acetylenic Carbinols and Glycols.J. Chem. Soc. 1946, 23, 39−45.
    Bal, B. S.; Childers, W. E.; Pinnick, H. W., Oxidation of α,β-Unsaturated Aldehydes. Tetrahedron 1981, 37, 2091−2906.
    Dumitru, R.; Jiang, W. Z.; Weeks, D. P.; Wilson, M. A., Crystal Structure of Dicamba Monooxygenase: a Rieske Nonheme Oxygenase that Catalyzes Oxidative Demethylation. J Mol Biol 2009, 392 (2), 498-510.
    Fatma F. Ö.; Sandy S., Rieske Non-heme Iron Dioxygenases: Applications and Future Perspectives. Springer Nature 2019, 34, 57-82.
    Barry, S. M.; Challis, G. L., Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases. ACS Catal 2013, 3, 2362-2370.
    Jie C.; Wenxun S.; Yong-Min L.; Wonwoo N.; Bin W., Biologically Inspired Nonheme Iron Complex-catalyzed cis-dihydroxylation of Alkenes Modeling Rieske Dioxygenases. Coordination Chemistry Reviews, 2023, 477, 2149-2172.
    Caroline J.; Juan B. A.; Wolfgang P. S.; Paul J. M. K.; Matilde B.; Stenbjóm S., Copper(II) Inhibition of Electron Transfer through Photosystem II Studied by EPR Spectroscopy. Biochemistry, 1995, 34, 12747-12754.
    Nam, W.; Lee, Y. M.; Fukuzumi, S., Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates. Acc Chem Res. 2018, 51 (9), 2014-2022.
    Jung, J.; Kim, S.; Lee, Y. M.; Nam, W.; Fukuzumi, S., Switchover of the Mechanism between Electron Transfer and Hydrogen-Atom Transfer for a Protonated Manganese(IV)-Oxo Complex by Changing Only the Reaction Temperature. Angew Chem Int Ed Engl 2016, 55 (26), 7450-7454.
    Shunichi F.; Yong-Min L.; Wonwoo N., Deuterium Kinetic Isotope Effects as Redox Mechanistic Criterions. Bulletin of the Korean Chemical Society 2021, 42, 1558-1561.
    .Murphy, C. C., Cirillo, P. M., Krigbaum, N. Y. & Cohn, B, Gestational growth and risk of young-onset colorectal cancer. J. Endocr. Soc. 2021, 5, A496–A497.
    Rebecca L. S.; Angela N. G.; Ahmedin J., Cancer Statistics. CA Cancer J Clin. 2024, 74, 12–49.
    Shuai X.; Sara M.; Yunan H.; Fei W.; Adetunji T. T., Breast Cancer Incidence Among US Women Aged 20 to 49 Years by Race, Stage, and Hormone Receptor Status. JAMA Network Open, 2024;7(1), 53331-53344.
    Collins, T. J., Designing Ligands for Oxidizing Complexes. Acc. Chem. Res. 1994, 27, 279−285.
    Mahmood, A.; Robinson, G. E.; Powell, L., An Improved Oxidation of an Alcohol using Aqueous Permanganate and Phase-Transfer Catalyst. Org. Process Res. Dev. 1999, 3, 363−364.
    Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J., Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach. J. Org. Chem. 1999, 64, 2564− 2566.
    Travis, B. R.; Sivakumar, M. G.; Hollist, O.; Borhan, B. F., Oxidation of Aldehydes to Acids and Esters with Oxone. Org. Lett. 2003, 5, 1031−1034.
    Hunsen, M., Carboxylic Acids from Primary Alcohols and Aldehydes by a Pyridinium Chlorochromate Catalyzed Oxidation. Synthesis 2005, 15, 2487−2490.
    March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; Smith, M. B., March, J., Eds.; Wiley Interscience: New York, 2007.
    Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y., Oxoammonium salt/NaClO2: an Expedient, Catalytic System for One-Pot Oxidation of Primary Alcohols to Carboxylic Acids with Broad Substrate Applicability. Chem. Commun. 2009, 3, 1739−1741.
    Bae, S. H.; Li, X. X.; Seo, M. S.; Lee, Y. M.; Fukuzumi, S.; Nam, W., Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)-Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. J Am Chem Soc 2019, 141(19), 7675-7679.

    無法下載圖示 本全文未授權公開
    QR CODE