簡易檢索 / 詳目顯示

研究生: 劉任浩
論文名稱: 整係數群環裡的有限乘法群
Finite Subgroups of Units in Integral Group Rings
指導教授: 劉家新
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 34
中文關鍵詞: 群環表現
英文關鍵詞: group ring, representation
論文種類: 學術論文
相關次數: 點閱:257下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1960年代中期, 關於 integral group rings 中的 torsion units 及 finite subgroups, H. Zassenhaus 提出了三個猜想。
    其中最強的一個猜想(ZC-3)如此敘述:
    如果 H 是 integral group ring ZG 裡係數和為 1 的 unit group 的有限子群, 則 H 會和 G 裡的一個子群在 QG 裡共軛。
    這篇論文裡, 我們要證明的是 ZC-3 對個數為 p^2q 的群皆成立, 其中 p, q 為相異質數。

    In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings.
    The strongest one (ZC-3) states:
    If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, then H is conjugate to a subgroup of G in QG.
    In this thesis, we prove that ZC-3 holds for groups of order p^2q, where p, q are distinct primes.

    Contents 1 Introduction 1 2 Preliminary 4 2.1 Universal Property . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Representations and Characters . . . . . . . . . . . . . . . . . 5 2.3 Torsion Units and Finite Subgroups . . . . . . . . . . . . . . . 9 3 Some Observations 12 3.1 Groups of Order p2q . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Some Known Results and Simple Cases 20 5 Representations and Some Reductions 23 6 Main result 27

    [DJ96] Michael A. Dokuchaev and Stanley O. Juriaans, Finite subgroups
    in integral group rings, Canad. J. Math. 48 (1996), no. 6, 1170–
    1179. MR MR1426898 (97j:20001)
    [DJPM97] Michael A. Dokuchaev, Stanley O. Juriaans, and C´esar Polcino
    Milies, Integral group rings of Frobenius groups and the conjectures
    of H. J. Zassenhaus, Comm. Algebra 25 (1997), no. 7,
    2311–2325. MR MR1451697 (98e:20010)
    [GP06] J. Z. Gon¸calves and D. S. Passman, Linear groups and group
    rings, J. Algebra 295 (2006), no. 1, 94–118. MR MR2188853
    (2006g:16060)
    [Her02] M. Hertweck, Another counterexample to a conjecture of Zassenhaus,
    Beitr¨age Algebra Geom. 43 (2002), no. 2, 513–520. MR
    MR1957755 (2004b:20012)
    [Her06] Martin Hertweck, On the torsion units of some integral
    group rings, Algebra Colloq. 13 (2006), no. 2, 329–348. MR
    MR2208368 (2006k:16049)
    [Hig40] Graham Higman, The units of group-rings, Proc. London Math.
    Soc. (2) 46 (1940), 231–248. MR MR0002137 (2,5b)
    [HK02] Martin Hertweck and Wolfgang Kimmerle, On principal blocks
    of p-constrained groups, Proc. London Math. Soc. (3) 84 (2002),
    no. 1, 179–193. MR MR1863399 (2002j:16030)
    [JL93] Gordon James and Martin Liebeck, Representations and characters
    of groups, Cambridge Mathematical Textbooks, Cambridge
    University Press, Cambridge, 1993. MR MR1237401 (94h:20007)
    [JPM00] Stanley O. Juriaans and C´esar Polcino Milies, Units of integral
    group rings of Frobenius groups, J. Group Theory 3 (2000), no. 3,
    277–284. MR MR1772015 (2001e:16054)
    [Kim02] W. Kimmerle, Group rings of finite simple groups, Resenhas 5
    (2002), no. 4, 261–278, Around group rings (Jasper, AB, 2001).
    MR MR2015338 (2004k:20006)
    [LS98] I. S. Luthar and Poonam Sehgal, Torsion units in integral group
    rings of some metacyclic groups, Res. Bull. Panjab Univ. Sci. 48
    (1998), no. 1-4, 137–153 (1999). MR MR1773990 (2001f:16065)
    [LT90] I. S. Luthar and Poonam Trama, Zassenhaus conjecture for certain
    integral group rings, J. Indian Math. Soc. (N.S.) 55 (1990),
    no. 1-4, 199–212. MR MR1088139 (92b:20008)
    [MRSW87] Z. Marciniak, J. Ritter, S. K. Sehgal, and A.Weiss, Torsion units
    in integral group rings of some metabelian groups. II, J. Number
    Theory 25 (1987), no. 3, 340–352. MR MR880467 (88k:20019)
    [PMS84] C´esar Polcino Milies and Sudarshan K. Sehgal, Torsion units in
    integral group rings of metacyclic groups, J. Number Theory 19
    (1984), no. 1, 103–114. MR MR751167 (86i:16009)
    [PMS02] , An introduction to group rings, Algebras and Applications,
    vol. 1, Kluwer Academic Publishers, Dordrecht, 2002. MR
    MR1896125 (2003b:16026)
    [Rog91] Klaus W. Roggenkamp, Observations on a conjecture of Hans
    Zassenhaus, Groups—St. Andrews 1989, Vol. 2, London Math.
    Soc. Lecture Note Ser., vol. 160, Cambridge Univ. Press, Cambridge,
    1991, pp. 427–444. MR MR1123997 (92g:20004)
    [RS83] J¨urgen Ritter and Sudarshan K. Sehgal, On a conjecture of
    Zassenhaus on torsion units in integral group rings, Math. Ann.
    264 (1983), no. 2, 257–270. MR MR711882 (85e:16014)
    [SSZ84] Sudarshan K. Sehgal, Surinder K. Sehgal, and Hans J. Zassenhaus,
    Isomorphism of integral group rings of abelian by nilpotent
    class two groups, Comm. Algebra 12 (1984), no. 19-20, 2401–
    2407. MR MR755921 (85m:20008)
    [Val94] Angela Valenti, Torsion units in integral group rings, Proc.
    Amer. Math. Soc. 120 (1994), no. 1, 1–4. MR MR1186996
    (94b:20008)
    [Wei88] Alfred Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2) 127
    (1988), no. 2, 317–332. MR MR932300 (89g:20010)
    [Wei91] , Torsion units in integral group rings, J. Reine Angew.
    Math. 415 (1991), 175–187. MR MR1096905 (92c:20009)

    QR CODE