研究生: |
劉任浩 |
---|---|
論文名稱: |
整係數群環裡的有限乘法群 Finite Subgroups of Units in Integral Group Rings |
指導教授: | 劉家新 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 群環 、表現 |
英文關鍵詞: | group ring, representation |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:30 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1960年代中期, 關於 integral group rings 中的 torsion units 及 finite subgroups, H. Zassenhaus 提出了三個猜想。
其中最強的一個猜想(ZC-3)如此敘述:
如果 H 是 integral group ring ZG 裡係數和為 1 的 unit group 的有限子群, 則 H 會和 G 裡的一個子群在 QG 裡共軛。
這篇論文裡, 我們要證明的是 ZC-3 對個數為 p^2q 的群皆成立, 其中 p, q 為相異質數。
In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings.
The strongest one (ZC-3) states:
If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, then H is conjugate to a subgroup of G in QG.
In this thesis, we prove that ZC-3 holds for groups of order p^2q, where p, q are distinct primes.
[DJ96] Michael A. Dokuchaev and Stanley O. Juriaans, Finite subgroups
in integral group rings, Canad. J. Math. 48 (1996), no. 6, 1170–
1179. MR MR1426898 (97j:20001)
[DJPM97] Michael A. Dokuchaev, Stanley O. Juriaans, and C´esar Polcino
Milies, Integral group rings of Frobenius groups and the conjectures
of H. J. Zassenhaus, Comm. Algebra 25 (1997), no. 7,
2311–2325. MR MR1451697 (98e:20010)
[GP06] J. Z. Gon¸calves and D. S. Passman, Linear groups and group
rings, J. Algebra 295 (2006), no. 1, 94–118. MR MR2188853
(2006g:16060)
[Her02] M. Hertweck, Another counterexample to a conjecture of Zassenhaus,
Beitr¨age Algebra Geom. 43 (2002), no. 2, 513–520. MR
MR1957755 (2004b:20012)
[Her06] Martin Hertweck, On the torsion units of some integral
group rings, Algebra Colloq. 13 (2006), no. 2, 329–348. MR
MR2208368 (2006k:16049)
[Hig40] Graham Higman, The units of group-rings, Proc. London Math.
Soc. (2) 46 (1940), 231–248. MR MR0002137 (2,5b)
[HK02] Martin Hertweck and Wolfgang Kimmerle, On principal blocks
of p-constrained groups, Proc. London Math. Soc. (3) 84 (2002),
no. 1, 179–193. MR MR1863399 (2002j:16030)
[JL93] Gordon James and Martin Liebeck, Representations and characters
of groups, Cambridge Mathematical Textbooks, Cambridge
University Press, Cambridge, 1993. MR MR1237401 (94h:20007)
[JPM00] Stanley O. Juriaans and C´esar Polcino Milies, Units of integral
group rings of Frobenius groups, J. Group Theory 3 (2000), no. 3,
277–284. MR MR1772015 (2001e:16054)
[Kim02] W. Kimmerle, Group rings of finite simple groups, Resenhas 5
(2002), no. 4, 261–278, Around group rings (Jasper, AB, 2001).
MR MR2015338 (2004k:20006)
[LS98] I. S. Luthar and Poonam Sehgal, Torsion units in integral group
rings of some metacyclic groups, Res. Bull. Panjab Univ. Sci. 48
(1998), no. 1-4, 137–153 (1999). MR MR1773990 (2001f:16065)
[LT90] I. S. Luthar and Poonam Trama, Zassenhaus conjecture for certain
integral group rings, J. Indian Math. Soc. (N.S.) 55 (1990),
no. 1-4, 199–212. MR MR1088139 (92b:20008)
[MRSW87] Z. Marciniak, J. Ritter, S. K. Sehgal, and A.Weiss, Torsion units
in integral group rings of some metabelian groups. II, J. Number
Theory 25 (1987), no. 3, 340–352. MR MR880467 (88k:20019)
[PMS84] C´esar Polcino Milies and Sudarshan K. Sehgal, Torsion units in
integral group rings of metacyclic groups, J. Number Theory 19
(1984), no. 1, 103–114. MR MR751167 (86i:16009)
[PMS02] , An introduction to group rings, Algebras and Applications,
vol. 1, Kluwer Academic Publishers, Dordrecht, 2002. MR
MR1896125 (2003b:16026)
[Rog91] Klaus W. Roggenkamp, Observations on a conjecture of Hans
Zassenhaus, Groups—St. Andrews 1989, Vol. 2, London Math.
Soc. Lecture Note Ser., vol. 160, Cambridge Univ. Press, Cambridge,
1991, pp. 427–444. MR MR1123997 (92g:20004)
[RS83] J¨urgen Ritter and Sudarshan K. Sehgal, On a conjecture of
Zassenhaus on torsion units in integral group rings, Math. Ann.
264 (1983), no. 2, 257–270. MR MR711882 (85e:16014)
[SSZ84] Sudarshan K. Sehgal, Surinder K. Sehgal, and Hans J. Zassenhaus,
Isomorphism of integral group rings of abelian by nilpotent
class two groups, Comm. Algebra 12 (1984), no. 19-20, 2401–
2407. MR MR755921 (85m:20008)
[Val94] Angela Valenti, Torsion units in integral group rings, Proc.
Amer. Math. Soc. 120 (1994), no. 1, 1–4. MR MR1186996
(94b:20008)
[Wei88] Alfred Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2) 127
(1988), no. 2, 317–332. MR MR932300 (89g:20010)
[Wei91] , Torsion units in integral group rings, J. Reine Angew.
Math. 415 (1991), 175–187. MR MR1096905 (92c:20009)