研究生: |
馮于真 Feng, Yu-Chen |
---|---|
論文名稱: |
以核磁共振研究來理解轉運蛋白之野生型和突變型A97S的結構及動力學差異 NMR Study Reveals the Structural and Dynamic Differences between Wild-Type and A97S Transthyretin |
指導教授: |
李以仁
Lee, I-Ren |
口試委員: |
李以仁
Lee, I-Ren 余慈顏 Yu, Tsyr-Yan 鄭有舜 Jeng, U-Ser |
口試日期: | 2023/06/01 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 家族性類澱粉多發性神經病變 、轉運蛋白 、液態核磁共振 、蛋白質構型 、蛋白質動態 、突變型 |
英文關鍵詞: | Familial Amyloidotic Polyneuropathy, Transthyretin, solution-state nuclear magnetic resonance, mutant, protein structural change, protein dynamic |
研究方法: | 實驗設計法 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202300528 |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
家族性類澱粉多發性神經病變,是一種具遺傳性的罕見疾病。它是類澱粉沉積症的一種,類澱粉蛋白會影響人體的器官與組織,尤其是心臟及神經病變。嚴重時會導致器官衰竭終至死亡,而對於此疾病目前沒有完全有效的治療方法。轉運蛋白是一種負責運輸甲狀腺素及視黃醇結合蛋白的同源四聚體蛋白,也是家族性類澱粉多發性神經病變的代表性蛋白之一。主要的途徑為此蛋白質的突變型因四聚體結構解離而形成單體,其三級結構會因錯誤折疊而形成類澱粉蛋白。
在本研究中,選擇了野生型和A97S突變型進行比較,A97S是台灣病人特有的突變型。透過液態核磁共振光譜儀的分析,來進一步認識兩者之間在結構上以及蛋白質的內部動態的細微變化。發現相較於野生型,A97S突變型中,尤其是在突變的胺基酸位置附近,在蛋白質的結構上的較為明顯的不同,連帶影響到了相鄰的胺基酸。而在動態的分析上,在第97個胺基酸(點突變位置)附近也發現了較為快速的內部動態,所以我們推論出A97S突變型在構型上及內部動力學的差異所帶來影響可能為致病的因素。
Familial amyloid polyneuropathy, a rare hereditary disease, is an amyloidosis associated with the formation of protein amyloid. Currently, there is no fully effective treatment available. Protein amyloid deposits could occur in the organs and tissues of the human body, especially the heart and neuropathy. In severe cases, it leads to organ failure and death. Transthyretin is a homotetramer protein responsible for transporting thyroxine and retinol-binding protein, causing 70% of the familial amyloid polyneuropathy cases. The key process for transthyretin to form amyloid is the dissociation of the tetrameric transthyretin into monomers. The monomers can undergo misfolding process, leading to amyloid formation.
In this study, I selected the wild-type and the A97S mutant which is a unique phenotype for Taiwanese TTR-FAP patients for comparison. Through the analysis of the solution-state nuclear magnetic resonance HSQC spectra and relaxation data, we can understand the structural and dynamic differences between WT and mutant transthyretin. I discovered obvious structural differences and flexible dynamic effects around the position where the mutated amino acid occurs. In conclusion, I deduce that the differences in the structure and internal dynamics of TTR protein may play an important role in determining its pathogenic factor.
Kelty R. Baker, M. D.; Lawrence Rice, M. D., The Amyloidoses: Clinical Features, Diagnosis and Treatment. Methodist Debakey Cardiovasc J 2012, Jul-Sep;8(3):3-7.
Giampaolo Merlini; Vittorio Bellotti, Molecular Mechanisms of Amyloidosis. The new england journal of medicine 2003, 349, 583-96.
Steven M. Johnson; R. Luke Wiseman; Yoshiki Sekijima; Nora S. Green; Sara L. Adamski-Werner; Kelly, J. W., Native State Kinetic Stabilization as a Strategy To Ameliorate Protein Misfolding Diseases: A Focus on the Transthyretin Amyloidoses. Acc. Chem. Res. 2005, 38, 12, 911–921.
Chan, G. G.; Koch, C. M.; Connors, L. H., Serum Proteomic Variability Associated with Clinical Phenotype in Familial Transthyretin Amyloidosis (ATTRm). J Proteome Res 2017, 16 (11), 4104-4112.
Plante-Bordeneuve, V.; Said, G., Familial amyloid polyneuropathy. Lancet Neurol 2011, 10 (12), 1086-97.
Andrade, C., A peculiar form of peripheral neuropathy: familial atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 1952, 408-427.
S Araki, S. M., M Ohta, et al., Polyneuritic amyloidosis in a Japanese family. Arch Neurol 1968, 18, 593-602.
Andersson, R., Familial amyloidosis with polyneuropathy. A clinical study based on patients living in northern Sweden. Acta Med Scand (Suppl) 1976, 590, 1-64.
Kabat, E. A.; Moore, D. H.; Landow, H., An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J. Clin. Investig. 1942, 21, 571.
Blake, C. C. F.; Geisow, M. J.; Swan, I. D. A.; Rerat, C.; Rerat, B., Structure of human plasma prealbumin at 2-5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J. Mol. Biol. 1974, 88, 1–12.
Kanda, Y.; Goodman, D. S.; Canfield, R. E.; Morgan, F. J., The Amino Acid Sequence of Human Plasma Prealbumin. Journal of Biological Chemistry 1974, 249 (21), 6796-6805.
Sanguinetti, C.; Minniti, M.; Susini, V.; Caponi, L.; Panichella, G.; Castiglione, V.; Aimo, A.; Emdin, M.; Vergaro, G.; Franzini, M., The Journey of Human Transthyretin: Synthesis, Structure Stability, and Catabolism. Biomedicines 2022, 10 (8).
J. A. Hamiltona; Bensonb, M. D., Transthyretin: a review from a structural perspective. CMLS, Cell. Mol. Life Sci. 2001, 1491–1521.
Ferguson, J. A.; Sun, X.; Dyson, H. J.; Wright, P. E., Thermodynamic Stability and Aggregation Kinetics of EF Helix and EF Loop Variants of Transthyretin. Biochemistry 2021, 60 (10), 756-764.
Liz, M. A.; Coelho, T.; Bellotti, V.; Fernandez-Arias, M. I.; Mallaina, P.; Obici, L., A Narrative Review of the Role of Transthyretin in Health and Disease. Neurol Ther 2020, 9 (2), 395-402.
Hilal A. Lashuel; Zhihong Lai; Kelly, J. W., Characterization of the Transthyretin Acid Denaturation Pathways by Analytical Ultracentrifugation: Implications for Wild-Type, V30M, and L55P Amyloid Fibril Formation. Biochemistry 1998, 37, 17851-17864.
Yoshinori Shinohara; Mineyuki Mizuguchi; Kimiaki Matsubara; Makoto Takeuchi; Atsushi Matsuura; Takahiro Aoki; Kouhei Igarashi; Hatsumi Nagadome; Yoshihiro Terada; Kawano, K., Biophysical Analyses of the Transthyretin Variants, Tyr114His and Tyr116Ser, Associated with Familial Amyloidotic Polyneuropathy. Biochemistry 2003, 42, 15053-15060.
Per Hammarstro¨m; Yoshiki Sekijima; Joleen T. White; R. Luke Wiseman; Amareth Lim; Catherine E. Costello; Klaus Altland; Ferenc Garzuly; Herbert Budka; Kelly, J. W., D18G Transthyretin Is Monomeric, Aggregation Prone, and Not Detectable in Plasma and Cerebrospinal Fluid: A Prescription for Central Nervous System Amyloidosis? Biochemistry 2003, 42, 6656-6663.
Jean A. Hamilton; Larry K. Steinrauf; Juris Liepnieks; Merrill D. Benson; Gosta Holmgren; Sandgren, O.; Steen, L., Alteration in molecular structure which results in disease: the Met-30 variant of human plasma transthyretin. Biochimica et Biophysica Acta, 1992, 9-16.
Zhao, L.; Buxbaum, J. N.; Reixach, N., Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry 2013, 52 (11), 1913-26.
McCutchen, S. L.; Colon, W.; Kelly, J. W., Transthyretin mutation Leu-55-Pro significantly alters tetramer stability and increases amyloidogenicity. Biochemistry 1993, 32 (45), 12119-27.
Carry, B. J.; Young, K.; Fielden, S.; Kelly, M. A.; Sturm, A. C.; Avila, J. D.; Martin, C. L.; Kirchner, H. L.; Fornwalt, B. K.; Haggerty, C. M.; Regeneron Genetics Center, T. N. Y. U. S. A., Genomic Screening for Pathogenic Transthyretin Variants Finds Evidence of Underdiagnosed Amyloid Cardiomyopathy From Health Records. JACC CardioOncol 2021, 3 (4), 550-561.
Hilal A. Lashuel; Christine Wurth; Linda Woo; Kelly, J. W., The Most Pathogenic Transthyretin Variant, L55P, Forms Amyloid Fibrils under Acidic Conditions and Protofilaments under Physiological Conditions. Biochemistry 1999, 38, 13560-13573.
Schmidt, M.; Wiese, S.; Adak, V.; Engler, J.; Agarwal, S.; Fritz, G.; Westermark, P.; Zacharias, M.; Fandrich, M., Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat Commun 2019, 10 (1), 5008.
Ridwan Babatunde Ibrahim; Ssu-Yu Yeh; Kon-Ping Lin; Frans Ricardo; Tsyr-Yan Yu; Chih-Chiang Chan; Tsai, J.-W.; Liu, Y.-T., Cellular secretion and cytotoxicity of transthyretin mutant proteins underlie late-onset amyloidosis and neurodegeneration. Cellular and Molecular Life Sciences 2020, 77, 1421–1434.
Yo-Tsen Liu; Yi-Chung Lee; Chih-Chao Yang; Mai-Ling Chen; Lin, K.-P., Transthyretin Ala97Ser in Chinese–Taiwanese patients with familial amyloid polyneuropathy: Genetic studies and phenotype expression. Journal of the Neurological Sciences 2008, 267 (1-2, 15), 91-99.
Liu, Y. T.; Yen, Y. J.; Ricardo, F.; Chang, Y.; Wu, P. H.; Huang, S. J.; Lin, K. P.; Yu, T. Y., Biophysical characterization and modulation of Transthyretin Ala97Ser. Ann Clin Transl Neurol 2019, 6 (10), 1961-1970.
Yee, A. W.; Aldeghi, M.; Blakeley, M. P.; Ostermann, A.; Mas, P. J.; Moulin, M.; de Sanctis, D.; Bowler, M. W.; Mueller-Dieckmann, C.; Mitchell, E. P.; Haertlein, M.; de Groot, B. L.; Boeri Erba, E.; Forsyth, V. T., A molecular mechanism for transthyretin amyloidogenesis. Nat Commun 2019, 10 (1), 925.
Ted R. Foss; R. Luke Wiseman; Kelly, J. W., The Pathway by Which the Tetrameric Protein Transthyretin Dissociates. Biochemistry 2005, 44, 15525-15533.
Cascella, R.; Conti, S.; Mannini, B.; Li, X.; Buxbaum, J. N.; Tiribilli, B.; Chiti, F.; Cecchi, C., Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro. Biochim Biophys Acta 2013, 1832 (12), 2302-14.
Jiang, X.; Labaudiniere, R.; Buxbaum, J. N.; Monteiro, C.; Novais, M.; Coelho, T.; Kelly, J. W., A circulating, disease-specific, mechanism-linked biomarker for ATTR polyneuropathy diagnosis and response to therapy prediction. Proc Natl Acad Sci U S A 2021, 118 (9).
Monteiro E; Perdigoto R; AL., F., Liver transplantation for familial amyloid polyneuropathy. Hepatogastroenterology 1998, 45 (23), 1375-80.
G Holmgren; L Steen; J Ekstedt; al., e., Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet 1991, 40, 24-26.
Fournier B; Giostra E; Mentha G; Huber O; Hadengue A; P., M., Transplantation hépatique orthotopique pour amyloïdose familiale portugaise [Orthotopic liver transplantation for familial Portuguese amyloidosis]. Schweiz Med Wochenschr Suppl. 1997, 89, 36S-40S.
Okamoto, S.; Wixner, J.; Obayashi, K.; Ando, Y.; Ericzon, B. G.; Friman, S.; Uchino, M.; Suhr, O. B., Liver transplantation for familial amyloidotic polyneuropathy: impact on Swedish patients' survival. Liver Transpl 2009, 15 (10), 1229-35.
Said, G.; Grippon, S.; Kirkpatrick, P., Tafamidis. Nat Rev Drug Discov 2012, 11 (3), 185-6.
Bulawa, C. E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J. A.; Packman, J.; Powers, E. T.; Wiseman, R. L.; Foss, T. R.; Wilson, I. A.; Kelly, J. W.; Labaudiniere, R., Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A 2012, 109 (24), 9629-34.
Li, X.; Zhang, X.; Ladiwala, A. R.; Du, D.; Yadav, J. K.; Tessier, P. M.; Wright, P. E.; Kelly, J. W.; Buxbaum, J. N., Mechanisms of transthyretin inhibition of beta-amyloid aggregation in vitro. J Neurosci 2013, 33 (50), 19423-33.
Yokoyama, T.; Mizuguchi, M., Transthyretin Amyloidogenesis Inhibitors: From Discovery to Current Developments. J Med Chem 2020, 63 (23), 14228-14242.
Sungwook Choi; Nata` lia Reixach; Stephen Connelly; Steven M. Johnson; Ian A. Wilson; Kelly, J. W., A Substructure Combination Strategy To Create Potent and Selective Transthyretin Kinetic Stabilizers That Prevent Amyloidogenesis and Cytotoxicity. J. AM. CHEM. SOC. 2010, 132, 1359–137.
Yokoyama, T.; Kashihara, M.; Mizuguchi, M., Repositioning of the Anthelmintic Drugs Bithionol and Triclabendazole as Transthyretin Amyloidogenesis Inhibitors. J Med Chem 2021, 64 (19), 14344-14357.
Sant'Anna, R.; Gallego, P.; Robinson, L. Z.; Pereira-Henriques, A.; Ferreira, N.; Pinheiro, F.; Esperante, S.; Pallares, I.; Huertas, O.; Almeida, M. R.; Reixach, N.; Insa, R.; Velazquez-Campoy, A.; Reverter, D.; Reig, N.; Ventura, S., Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nat Commun 2016, 7, 10787.
Chen, B.; Mou, C.; Guo, F.; Sun, Q.; Qu, L.; Li, L.; Cui, W.; Lu, F.; Jin, C.; Liu, F., Tolcapone Derivative (Tol-D) Inhibits Abeta42 Fibrillogenesis and Ameliorates Abeta42-Induced Cytotoxicity and Cognitive Impairment. ACS Chem Neurosci 2022, 13 (5), 638-647.
Kim, B.; Ko, Y. H.; Runfola, M.; Rapposelli, S.; Ortore, G.; Chiellini, G.; Kim, J. H., Diphenyl-Methane Based Thyromimetic Inhibitors for Transthyretin Amyloidosis. Int J Mol Sci 2021, 22 (7).
Pinheiro, F.; Pallares, I.; Peccati, F.; Sanchez-Morales, A.; Varejao, N.; Bezerra, F.; Ortega-Alarcon, D.; Gonzalez, D.; Osorio, M.; Navarro, S.; Velazquez-Campoy, A.; Almeida, M. R.; Reverter, D.; Busque, F.; Alibes, R.; Sodupe, M.; Ventura, S., Development of a Highly Potent Transthyretin Amyloidogenesis Inhibitor: Design, Synthesis, and Evaluation. J Med Chem 2022, 65 (21), 14673-14691.
Arnt V Kristen; Senda Ajroud-Driss; Isabel Conceição; Peter Gorevic; Kyriakides, T.; Obici, L., Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegenerative Disease Management 2019, 9 (1), 1-57.
Urits, I.; Swanson, D.; Swett, M. C.; Patel, A.; Berardino, K.; Amgalan, A.; Berger, A. A.; Kassem, H.; Kaye, A. D.; Viswanath, O., A Review of Patisiran (ONPATTRO(R)) for the Treatment of Polyneuropathy in People with Hereditary Transthyretin Amyloidosis. Neurol Ther 2020, 9 (2), 301-315.
Palaninathan, S. K., Nearly 200 X-Ray Crystal Structures of Transthyretin: What Do They Tell Us About This Protein and the Design of Drugs for TTR Amyloidoses? Current Medicinal Chemistry 2012, 19, 2324-2342.
Leach, B. I.; Zhang, X.; Kelly, J. W.; Dyson, H. J.; Wright, P. E., NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations. Biochemistry 2018, 57 (30), 4421-4430.
Davidovits, P., Nuclear Physics. Physics in Biology and Medicine 2019, 279-291.
Hosur, R. V.; Kakita, V. M. R., Fourier Transform NMR. A Graduate Course in NMR Spectroscopy 2022, 89–142.
Ziarek, J. J.; Peterson, F. C.; Lytle, B. L.; Volkman, B. F., Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol 2011, 493, 241-75.
Williamson, M. P., Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 2013, 73, 1-16.
John Cavanagh; Nicholas Skelton; Wayne Fairbrother; Mark Rance; Arthur Palmer, Protein NMR Spectroscopy– Principles and Practice. 2006.
R., G.; Thuduppathy; Hill, R. B., Applications of NMR Spin Relaxation Methods for Measuring Biological Motions. Methods in Enzymology 2004, 243-264.
Fushman, D., Determining protein dynamics from 15N relaxation data by using DYNAMICS. Methods Mol Biol. 2012, 831: 485–511.
Ishima, R.; Torchia, D. A., Protein dynamics from NMR. nature structural biology 2000, 7.
Hu, Y.; Cheng, K.; He, L.; Zhang, X.; Jiang, B.; Jiang, L.; Li, C.; Wang, G.; Yang, Y.; Liu, M., NMR-Based Methods for Protein Analysis. Anal Chem 2021, 93 (4), 1866-1879.
Anderson, J. S.; Hernandez, G.; LeMaster, D. M., Prediction of Bond Vector Autocorrelation Functions from Larmor Frequency-Selective Order Parameter Analysis of NMR Relaxation Data. J Chem Theory Comput 2017, 13 (7), 3276-3289.
Poulson, B. G., Nuclear Magnetic Resonance Spectroscopy. Encyclopedia. 2020.
Sedaghat Doost, A.; Akbari, M.; Stevens, C. V.; Setiowati, A. D.; Van der Meeren, P., A review on nuclear overhauser enhancement (NOE) and rotating-frame overhauser effect (ROE) NMR techniques in food science: Basic principles and applications. Trends in Food Science & Technology 2019, 86, 16-24.
Patrice Dosset, D. M. M. B., Analysis of 15 N Relaxation Data: Global and Internal Motions of Proteins. 2001.
Frank Delaglio; Stephan Grzesiek ; Geerten W. Vuister; Zhu, G.; Pfeifer, J.; Bax, A., NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR 1995.
Keller, R. L. J., The Computer Aided Resonance Assignment Tutorial. 2004.
Williamson, M. P., Chemical Shift Perturbation. Modern Magnetic Resonance 2018, 995–1012.
Beckwith, M. A.; Erazo-Colon, T.; Johnson, B. A., RING NMR dynamics: software for analysis of multiple NMR relaxation experiments. J Biomol NMR 2021, 75 (1), 9-23.