簡易檢索 / 詳目顯示

研究生: 林于雄
Lin, Yu-Hsiung
論文名稱: 以眼球追蹤技術探究互動學習軟體對七年級學生基因概念的學習
Use Eye Tracking Method to Explore the Learning of the Genetic Concepts of Seventh-grade Students with Interactive Learning Software
指導教授: 楊芳瑩
Yang, Fang-Ying
口試委員: 劉湘瑤 王嘉瑜
口試日期: 2021/07/22
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 基因遺傳互動學習軟體眼球追蹤
英文關鍵詞: genes, genetics, interactive learning software, eye tracking
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101145
論文種類: 學術論文
相關次數: 點閱:242下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國中的基因與遺傳是教師和學生都覺得難教難學的主題。基於現在資訊輔助教學的普及與國內相關中文學習APP的缺乏,本研究發展一套互動學習軟體,結合眼球追蹤技術、學習者特性問卷探討學生使用基因與遺傳互動軟體的學習。
    研究對象為41名自願參加的國一學生,於109年4月至7月實驗。前測後,學生進行互動軟體學習,同時收集眼動資料,接著填寫學習者問卷(認知負荷、生物與技術態度及學習動機量表)。實驗後,依後測平均分組:高學習成就組(專家)23人、低學習成就組(生手)18人。針對前後測分數、眼動資料及學習者特性,以SPSS23進行描述性統計、成對樣本t檢定、獨立樣本t檢定、Partial correlation、Pearson correlation與逐步回歸分析。
    結果發現:前後測的結果發現互動軟體對於學生的基因與遺傳的學習有幫助,且對於高學習成就組的表現稍高。此外,互動軟體的第一部分基礎學習不會造成不同學習成就學生的眼動差異與認知負荷評分的差異,說明互動軟體不會造成不同學習成就學習者過多的認知負荷。此外,從掃視時間看來,高學習成就組需花較花的時間統整第一部分基礎學習的訊息達接近顯著水準,與前人研究相符值得注意。而第二部分進階學習中高學習成就的學習者會降低圖及提示訊息的注意力分配,把注意力多分配在問題理解與答案的思考上。互動軟體的靜態與動態圖來看,互動的動態圖能幫助學生達到較好的學習成就。試題分析來看,高學習成就的學生使用互動軟體進行概念學習後,後測中各個認知歷程-學習內容面向大多都有顯著進步。注意力模式與學習者特性預測學習結果以微觀符號的圖上的掃視時間(SD)預測學習成就的模型配適度較好,此結果說明學習者在圖形上的訊息統整是預測學習成就的主要因素。
    研究者對未來基因與遺傳的多媒體輔助教學的研究,建議可以就巨觀、微觀、符號層次中選一或二層次概念研究,或是每位受測者的學習提升至20-30分鐘左右。此外,未來也可探討學習者在微觀、巨觀和符號概念或是圖、文、影片等表徵轉換的困難和學習歷程的關係,或比較都市文教區學校與非都市文教區學校的學生學習差異。

    In middle schools, teachers and students find it difficult to teach and learn the topics about gene and genetics. Although the technology-assisted teaching is getting popular, there is still a lack of interactive learning apps focusing on the topics of gene and genetics in Taiwan, this study developed an interactive learning software and used eye tracking technology and learner characteristics questionnaires to explore students' learning in this interactive software.
    The subjects of the study were 41 7th grade students who participated in the experiment from April to July 2020. After the pre-test, students played with the interactive learning software while their eye movements were recorded by the Tobii x3-120 eye tracking system. After the learning activity, participants were asked to fill out the learner questionnaire (assessing Cognitive Load, Biological and Technological Attitudes and Learning Motivation Scale). After the experiment, Students were divided into two groups according to the result of the post-test: 23 people were assigned to in the high learning achievement group (expert) and 18 people in the low learning achievement group (novice). Data analysis methods included descriptive statistics, paired sample t test, independent sample t test, partial correlation, Pearson correlation, and stepwise regression analysis.
    The result are summarized as followed. A comparison between the pre-test and post-test results suggested that the interactive software was helpful for the learning of students' genes and genetics. No differences in the eye movement patterns and scores cognitive load were found between students with different learning achievements in the first part of the learning program focusing on the basic concepts did not result in cause. The finding indicated that the interactive software did not cause excessive cognitive load on learners. The eye movment analysis showed that the high achievers spent more time to integrate the first part of the basic learning information, which is consistent with previous research. In the second part of learning which involved more advanced concepts, high-achieving learners attended less to the pictures and prompt messages, and allocated more attention to question and answers. Attention patterns and learner characteristics were found to predict learning results. Additionally, it was found that attention to the interactive dynamic diagrams could help students to achieve better learning achievements. The test items were futher differentiated in to different categories based on Bloom’s Taxonomy. By analyzing the test performances, it was found that high achievers performed better in all the content aspects of the post-test. Regression analysis suggested that the saccade duration (SD) on the micro-symbol graph predicted learning.
    The study result implies that the research on the teaching of gene and genetics may involve one or two levels of concepts divided into macro, micro, and symbolic levels. The learning duration should be kept in 20-30 minutes. In the future, we can also explore the relationships between learners’ difficulties in the conversion of micro, macro, and symbolic concepts or representations of pictures, texts, films, etc. and their learning process, or compare the learning differences between schools in different districts.

    第壹章、緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 3 第三節 研究限制 4 第四節 名詞解釋 5 第貳章、文獻探討 6 第一節 基因與遺傳主題相關概念的學習 6 第二節 電腦多媒體輔助教學 11 第三節 眼球追蹤技術的科學學習研究應用 14 第參章、研究方法 18 第一節 研究對象 18 第二節 研究工具 19 一、眼球追踨系統 19 二、前、後測題本 19 三、學習者特性問卷 20 四、互動學習軟體 22 第三節 研究設計 26 一、研究流程 26 二、眼動指標 27 三、分析方法 28 第肆章、資料呈現與分析 29 第一節 前後測結果與分析 30 第二節 學習者特性調查之結果與分析 32 一、認知負荷 32 二、生物與技術態度 33 三、學習動機 35 第三節 學習者在互動學習軟體上的眼動歷程 38 一、互動軟體第一部分:基礎學習 40 二、互動軟體第二部分:進階學習 42 第四節 學生學習表現與注意力模式之關係 44 一、注意力模式與學習成就的偏相關結果 44 二、注意力模式與學習成效的相關結果 45 第五節 學生學習成就與學習軟體中圖形注意力之關係 47 第六節 不同學習成就學習者的注意力模式差異分析 49 一、第一部分基礎學習的眼動指標分析比較 49 二、第二部分進階學習的眼動指標分析比較 53 第七節 不同學習成就學習者的試題表現分析 58 一、低學習成就組的試題分析 59 二、高學習成就組的試題分析 59 第八節 注意力模式、學習者特性對學習表現的預測力分析 61 一、注意力模式對互動軟體學習表現的預測 61 二、學習者特性對互動軟體學習表現的預測 62 三、注意力模式與學習者特性對互動軟體學習表現的預測 63 第伍章、結果討論與展望 65 第一節 研究結果與討論 65 一、前後測結果 65 二、學習者特性調查結果 66 三、學習者在互動軟體上的眼動模式 67 四、學生學習表現與注意力模式之關係 68 五、學生學習成就與學習軟體中圖形之關係 69 六、不同學習成就的學習者的注意力模式差異分析 69 七、不同學習成就學習者的試題表現分析 70 八、注意力模式、學習者特性對學習表現的預測力分析 70 九、研究問題的回應 71 第二節 教育的意涵 74 第三節 未來展望 76 參考文獻 77 附錄1 前後測題本 82 附錄2 學習者特性問卷 84

    隋奇融(2021)。以Go-Lab平台發展與實施科學探究實作評量。國立臺灣師範大學。碩士論文。臺北市。DOI:10.6345/NTNU202100013
    林祐安(2019)。桌遊對演化與遺傳學學習成效與學生看法之影響。國立臺灣師範大學。碩士論文。臺北市。DOI:10.6345/NTNU201900435
    曾盈嘉(2019)。學生分類學概念訊息處理模式及對分類學發展的看法與解釋。國立臺灣師範大學。碩士論文。臺北市。
    楊子瑩(2019)。科學史情境融入遺傳學實驗教學成效之研究。國立高雄師範大學。碩士論文。高雄市。
    王用慈(2019)。自我效能與跨學科圖文閱讀:眼動取向的研究。國立交通大學。碩士論文。新竹市。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級等校:自然科學領域。臺北市:教育部。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級等校:科技領域。臺北市:教育部。
    黃維成(2018)。重理解的課程設計結合翻轉教室之行動研究 - 以國中生物科為例。淡江大學。碩士論文。臺北市。
    鍾昌宏(2017)。翻轉教室融入論證探究教學模式之發展與學生成效評估—以遺傳單元為例。國立彰化師範大學。碩士論文。彰化。
    黃莉郁(2016)。探討遺傳概念相關溯因推理認知歷程之腦波動態與眼動模式。國立交通大學。博士論文。新竹市。
    顏瓊芬、游淑媚、黃臺珠、林陳涌、林曉雯、王靜如、高慧蓮、盧秀琴(2016)。生物概念與教學。臺北市。
    蕭浚峰(2016)。國中生物科教學融入數位心智圖對學生學習成效的影響。國立臺灣師範大學。碩士論文。臺北市。
    陳昕晏(2015)。融入探究元素之教學模組對七年級學生學習成效、科學素養及學習興趣之影響 -以生殖與遺傳單元為例。國立彰化師範大學。碩士論文。彰化。
    鍾昌宏、王國華(2014)。國民中學學生接受不同電腦模擬融入論證式探究的教學模式之學習成效探討-以遺傳單元為例。數位學習科技期刊,3(6),19-40。DOI:10.3966/2071260X2014070603002
    陳俊亨(2014)。融入電腦模擬對七年級學生在遺傳單元之認知成就、學習動機與心流經驗的影響。國立臺灣師範大學。碩士論文。臺北市。
    佘哲榮(2013)。多層可操作式透明片運用於高中遺傳單元的學習成效研究。國立彰化師範大學。碩士論文。彰化。
    陳怡潔(2013)。以認知負荷觀點探討動態簡報對國中學生學習成效之影響-以遺傳單元為例。國立彰化師範大學。碩士論文。彰化。
    簡郁芩、吳昭容(2012)。以眼動型態和閱讀測驗表現探討箭頭在科學圖文閱讀中的圖示效果。中華心理學刊,54(3),385-402。https://doi.org/10.6129/CJP.2012.5403.07
    楊坤原、張賴妙理(2004)。遺傳學迷思概念之文獻探討及其在教學上的啟示。科學教育學刊,12(3),365-398。DOI:10.6173/CJSE.2004.1203.05
    魏立欣譯(2004)。M.D Roblyer著(2000)。教育科技融入教學(Integrating Educational Technology into Teaching)。高等教育出版社。臺北市。
    郭璟諭(2003)。媒體組合方式與認知型態對學習成就與認知負荷之影響。國立中央大學。碩士論文。桃園市。
    王子華、王國華、王瑋龍、黃世傑(2002)。大學普通生物學後設認知量表的發展。國立彰化師範大學。碩士論文。彰化DOI:10.6773/JRMS.200212.0075。
    王貞惠(2001)。改善學生遺傳概念學習之研究應用「巨觀」-「微觀」-「符號表徵」導向之概念改變。國立高雄師範大學。碩士論文。高雄市。
    宋曜廷(2000)。先前知識、文章結構和多媒體呈現對文章學習的影響。國立臺灣師範大學。博士論文。臺北市。
    熊召弟、王美芬、段曉林、熊同鑫 (1996)。 科學學習心理學。心理出版社。臺北市。
    余清華譯(1994)。Esther R.Steinberg著(1993)。電腦輔助教學─理論與實踐(Computer-Assisted Instruction:A synthesis of theory, practice and technology.)。松崗出版社。臺北市。
    邱貴發(1994)。電腦輔助學習的理念與發展方向。教學科技與媒體,000(13),15-22。
    邱貴發(1992)。電腦輔助教學成效探討。視聽教育雙月刊,33(5),11-18。
    Anderson, L.W. (Ed.), Krathwohl, D.R. (Ed.), Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J., & Wittrock, M.C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s Taxonomy of Educational Objectives (Complete edition). New York: Longman.
    Annetta, L. A., Minogue, J., Holmes, S. Y. & Cheng, M.-T. (2009), Investigating the impact of video games on high School Students’ engagement and learning about genetics, Computers & Education, 53(1), 74-85. https://doi.org/10.1016/j.compedu.2008.12.020
    M. Bahar , A. H. Johnstone & R. G. Sutcliffe (1999) Investigation of students'cognitive structure in elementary genetics through word association tests, Journal of BiologicalEducation, 33:3, 134-141, DOI: 10.1080/00219266.1999.9655653
    Barak, M., Ashkar, T., & Dori, Y. J. (2011). Learning science via animated movies: Its effect on students’ thinking and motivation. Computers & Education, 56(3), 839–846. https://doi.org/10.1016/j.compedu.2010.10.025
    Chen, Z. H., & Chen, S. Y. (2014). When educational agents meet surrogate competition: Impacts of competitive educational agents on students’ motivation and performance. Computers and Education, 75, 274-281. https://doi.org/10.1016/j.compedu.2014.02.014
    Chu, Yu-Chien (2008) Learning difficulties in genetics and the development of related attitudes in Taiwanese junior high schools. PhD thesis, University of Glasgow. United Kingdom.
    Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1084–1102. https://doi.org/10.1037/0278-7393.18.5.1084
    Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32(6), 717–742. https://doi.org/10.1006/jmla.1993.1036
    Hong, JC., Hwang, MY., Tai, KH. et al. An Exploration of Students’ Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning With an iPad. Res Sci Educ 47, 1193–1212 (2017). https://doi.org/10.1007/s11165-016-9541-y
    Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354. https://doi.org/10.1037/0033-295X.87.4.329
    Jenny Lewis & Colin Wood-Robinson (2000) Genes, chromosomes, cell division and inheritance - do students see any relationship?, International Journal of Science Education, 22:2, 177-195, DOI: 10.1080/095006900289949
    Jenny Lewis, John Leach & Colin Wood-Robinson (2000) All in the genes? — young people's understanding of the nature of genes, Journal of Biological Education, 34:2, 74-79, DOI: 10.1080/00219266.2000.9655689
    Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., Lee, M. H., Chiou, G. L., Liang, J. C., & Tsai, C. C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90-115. https://doi.org/10.1016/j.edurev.2013.10.001
    Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29–40. https://doi.org/10.1016/j.compedu.2013.07.033
    Pekel ,F. O. (2015). Dynamising Conceptual Change Approach to Teach Some Genetics Concepts, e-International Journal of Educational Research ,6(2), 51-68 https://doi.org/10.19160/e-ijer.39715
    Pierce, R., Stacey, K., & Barkatsas, A. (2007). A scale for monitoring students' attitudes to learning mathematics with technology. Computers and Education, 48(2), 285 - 300.
    Simon H.A. (1977) The Theory of Problem Solving. In: Models of Discovery. Boston Studies in the Philosophy of Science, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9521-1_13
    Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. https://doi.org/10.1037/0033-2909.124.3.372
    Roblyer,M.D.& Edwards, J.(2000). Integrating educational technology into teaching (2nd ed.). USA: Prentice-Hill.
    Yang, C., Chun-Hui, J., Chun-Yen, C., & Ting-Kuang Yeh. (2018). Comparison of animation and static-picture based instruction: Effects on performance and cognitive load for learning genetics. Journal of Educational Technology & Society, 21(4), 1-11. Retrieved from https://0-www.proquest.com.opac.lib.ntnu.edu.tw/scholarly-journals/comparison-animation-static-picture-based/docview/2147863080/se-2?accountid=14228
    Yang, F.-Y., Chang C.-Y., Jien W.-R., Chien Y.-T., Tseng Y.-H.(2018)Tracking learners’ visual attention during a multimedia presentation in a real classroom. Computers & Education 62, 208-220. https://doi.org/10.1016/j.compedu.2012.10.009
    Yang, F.-Y., Tsai, M.-J., Chiou, G.-L., Lee, S. W.-Y., Chang, C.-C., & Chen, L.-L. (2018). Instructional suggestions supporting science learning in digital environments based on a review of eye tracking studies. Journal of Educational Technology & Society, 21(2), 28–45. from http://www.jstor.org/stable/26388377
    Wichmann, A., Gottdenker, J., & Jonassen, D. Milrad, M. (2007). Scientific inquiry learning using computer supported experimentation. January, 20, 2007. Retrieved from http://spaceplanting.coe. missouri.edu/doc/docs/ ICCE_predictioncycle.pdf
    Zahira Merchant, Ernest T. Goetz, Lauren Cifuentes, Wendy Keeney-Kennicutt, Trina J. Davis(2014).Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis.Computers & Education, 70, 29-40. https://doi.org/10.1016/j.compedu.2013.07.033.

    下載圖示
    QR CODE