研究生: |
吳冠儒 Guan-Ju Wu |
---|---|
論文名稱: |
利用格林函數逼近法研究對光子晶體能帶結構的保結構倍增演算法 Structured Doubling Algorithm for the Band Structure of Photonics Crystals Using Green’s Function Approach |
指導教授: |
黃聰明
Huang, Tsung-Ming |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 25 |
中文關鍵詞: | 光子晶體 、橫向磁場模式 、格林函數逼近法 、保結構倍增演算法 、能帶結構 |
英文關鍵詞: | Photonic crystals, TM mode, Green’s function approach, structure-preserving doubling algorithm, band gap |
論文種類: | 學術論文 |
相關次數: | 點閱:207 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於光子晶體能帶結構的特性可以被引用在各種物理及電機上的應用,所以近年來已經成為大家感興趣的一門研究。在這篇論文,我們主要致力於使用更有效率的方式,來呈現清楚的能帶結構的圖表;主要處理的問題是來自於一個二維光子晶體在橫向磁場模式上,在離散我們的問題之後,將會得到一個無窮維的特徵值問題,利用格林函數逼近法,又可以將我們問題轉化成一個非線性矩陣方程式,接下來我們引用保結構倍增演算法來解決這個非線性矩陣方程式得到這個問題的穩定解,而利用這個答案,我們可以呈現光子晶體能帶結構之圖形,並且成功地對這方面的問題引進更有效率之解決方法。
Full band gap structure is the most distinguished feature of photonic crystal and attracts extensive studies in its properties and applications. Our basic goal in this paper is to use an efficient way to illustrate the band structure of our problem and find the band gap as we can. First, we have a 2-D photonic crystals model in TM mode. After discretization, we can reduce our problem into an infinite general eigenvalue problem (GEP). Using Green’ s function approach, we can transform the infinite GEP into a finite order non-linear matrix equation (NME), whose solution can be used to illustrate the band structure figure. Next, we apply the structure-preserving doubling algorithm to solve this NME and get the solution with a nice efficiency by the special form of our matrices. Finally, we can successfully get the band structure figure and present an advanced way in the research of photonic crystals.
[1] Aleksey Kletsov and Yuri Dahnovsky, J. V. Ortiz, Surface Green's function calculations: A nonrecursive scheme with an infinite number of principal layers, Journal of Chemical Physics, Vol. 126, 134105 (2007).
[2] John Tomfohr and Otto F. Sankey, Theoretical analysis of electron transport through organic molecules, Journal of Chemical Physics, Vol. 120, 3(2004).
[3] D.L. John and D.L. Rulfrey, Green's function calculations for semi-infinite carbon nanotubes.
[4] C.-H. Guo, Y.-C. Kuo, and W.-W. Lin, Numerical solution of nonlinear matrix equations arising from Green's function calculations in nano research.
[5] W.-W.LinandS.-F.Xu,Convergenceanalysisofstructure-preserving Doubling algorithm for Riccati-type matrix equation, SIAM J. Matrix Anal. Appl., Vol. 28, 1(2006), pp 26-39.
[6] C. Engstrom and M. Wang, Complex dispersion relation calculations with the symmetric interior penalty method, Int. J. Numer. Meth. Engng 2010; 84:849–-863.
[7] W.-W. Lin, The Nonlinear Matrix Equation X + A^(T)X^(−1)A = Q and Its Application in Nano Reaserch, powerpoint, in 3rd seminar of numerical algebra and high performance computation.
[8] Gohberg, Goldberg, and Kaashoek, Operator Theory vol.II, 1993, Chap. XXIV.