簡易檢索 / 詳目顯示

研究生: 邱澔瑜
Chiou, Hau-Yu
論文名稱: 有機不對稱連鎖反應:以1,3-共軛烯炔與烯胺酮衍生物進行Michael/oxa-Michael加成反應建立四氫-4H-苯併吡喃架構
Organocascade Michael/oxa-Michael addition to construct tetrahydro-4H-chromene skeletons of 1,3-enyne with 1,3-cyclohexane-derived enaminones
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 86
中文關鍵詞: 有機連鎖反應[3+3]合環反應1,3-共軛烯炔
英文關鍵詞: Organocascaed, [3+3]-cycloaddtion, 1,3-enyne
DOI URL: https://doi.org/10.6345/NTNU202202395
論文種類: 學術論文
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

以有機催化劑進行有機不對稱連鎖反應進行,建構高鏡像選擇性之四氫-4H-苯並吡喃架構之產物。使用1,3-硝基共軛烯炔及烯胺酮,以氯仿為溶劑並利用20%之奎寧-硫尿素衍生之雙關能基催化劑,透過催化劑上三級胺及硫尿素之氫鍵催化,於0 oC,下進行兩分子間[3+3]合環反應,經由Michael/丙二烯生成/oxa-Micheal之過程得到四氫-4H-苯並吡喃架構為主架構之產物,最高可達48%產率,以及不錯的鏡像選擇性(up to >99%)。

The method is to construct high enatioseletivity of fourhydro-4H-chromene scaffold via bifunctional organocatalyst. The organocascade reaction is carried out between 1,3-nitro enynes and enaminones to afford tetrahydro-4H-chromene structures in CHCl3 through hydron-bonding interaction under 0 degree. The reaction proceeds through sequential conjugate Michael addition/allene formation/intramolecular oxa-Michael addition in medium yield (up to 48% yield) and excellent stereoselectivites (up to >99%).

第一章 緒論 1  1-1 前言 1  1-2 有機催化之分類 2  1-3 有機催化劑之發展 3   1-3-1 有機共價催化 3   1-3-2 有機非共價催化 6  1-4 有機連鎖反應 9   1-4-1 有機連鎖反應-Cascade反應 9   1-4-2 有機連鎖反應-Domino反應 12   1-4-3 有機連鎖反應-Tandem反應 14  1-5 烯胺酮之應用 15  1-6 共軛烯炔之應用 18  1-7 研究動機 21 第二章 實驗結果與討論 23 2-1 共軛烯炔及烯胺酮之製備 23  2-2  有機催化共軛烯炔及烯胺酮之衍生物進行[3+3]合環反應 23   2-2-1 苯肼衍生之烯胺酮-催化劑之篩選 23   2-2-2 苯肼衍生烯胺酮-溶劑篩選 25   2-2-3 苯肼衍生之烯胺酮-溫度篩選 26   2-2-4 苯肼衍生之烯胺酮-當量數篩選 26   2-2-5 苯肼衍生之烯胺酮-添加劑篩選 27   2-2-6 苯肼衍生之烯胺酮-濃度篩選 28   2-2-7 苯肼衍生之烯胺酮-取代基效應 29   2-2-8 產物結構分析 33   2-2-9 反應機構之探討 35  2-3 結論 36 第三章 實驗流程與數據 37  3-1 分析儀器及基本實驗操作 37  3-2 有機不對稱Michael/Oxo-Michael連鎖反應 39   3-2-1 起始物製備之流程 39   3-2-2 一般實驗流程 40  3-3 光譜數據 41 第四章 參考文獻 49  附錄一 1H-NMR、13C-NMR光譜圖 53  附錄二 X-ray結構解析與數據 73

1. https://en.wikipedia.org/wiki/Chemistry.
2. https://en.wikipedia.org/wiki/Organic_chemistry.
3. Bredig, G.; Fiske, W. S. Biochem. Z. 1912, 7.
4. Pracejus, H. Annalen Der Chemie-Justus Liebig. 1960, 634, 9.
5. List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem. Soc. 2000, 122, 2395.
6. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794.
7. Hayashi, Y.; Gotoh, H.; T.; Hayashi, T.; Shoji. M. Angew. Chem. Int. Ed. 2005, 44, 4212.
8. List, B. Chem. Rev. 2007, 107, 5413.
9. Jacobsen, E. N.; Doyle, A. G. Chem. Rev. 2007, 107, 5713.
10. Okino, T.; Hoashi, Y.; Takemoto, Y. J.Am.Chem.Soc. 2003, 125, 12672.
11. Quiñonero, D.; Frontera, A.; Ballester, P.; Deyà, P. M. Tetrahedron Letters 2000, 41, 2001.
12. Malerich, J. P.; Hagihara, K.; Rawal, V. H. J.Am.Chem.Soc. 2008, 130, 14416.
13. Ye, Z.; Maleric, J. P.; Rawal, V. H. Angew. Chem. Int. Ed. 2010, 49, 153.
14. Wen, Y.; Du, D. M. Chem. Commun. 2013, 49, 8842.
15. Kumarswamyreddy, N.; Kesavan, V. Org. Lett. 2016, 18, 1354.
16. Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.
17. Tietze, L. F. Chem. Rev. 1996, 96, 115.
18. Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
19. Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051.

20. Enders, D.; Hüttl, M. R. M.; Grondal1, C.; Raabe, G. Nature 2006, 441, 861.
21. Liu, C. L.; Zhang, X. S.; Wang, R.; Wang, W. Org. Lett. 2010, 12, 21, 4948.
22. Brandau, S.; Maerten, E.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 14986.
23. Kumar, M.; Chauhan, P.; Valkonen, A., Rissanen, K.; Enders, D. Org. Lett. 2017, 19, 3025.
24. Jin, Z.; Yu, F.; Wang, X.; Huang, H.; Luo, X.; Liang, X.; Ye, J. Org. Biomol. Chem. 2011, 9, 1809.
25. Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z.; Shi, D. Org. Lett. 2012, 14, 4595.
26. Saha, S; Schneider, C. Org. Lett. 2015, 17, 648.
27. Zhao, J. J.; Zhang, Y. C.; Xu, M. M.; Tang, M.; Shi, F. J. Org. Chem. 2015, 80, 10016.
28. Wan, J. P.; Cao, S.; Liu, Y. Y. Org. Lett. 2016, 18, 6034.
29. Zhu, Q. N.; Zhang, Y. C.; Xu, M. M.; Sun, X. X.; Yang, X.; Shi, F. J. Org. Chem. 2016, 81, 7898.
30. Jang, H. Y.; Huddleston, R. R.; Krische, M. J. Am. Chem. Soc. 2004, 126, 4664.
31. Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A. Angew. Chem. Int. Ed. 2009, 48, 8923.
32. Bharathiraja, G.; Sakthivel, S.; Sengoden, M.; Punniyamurthy, H. Org. Lett., 2013, 15, 4996.
33. Hack, D.; Chauhan, P.; Deckers, K.; Mizutani, Y.; Raabea, G.; Enders, D. Chem. Commun., 2015, 51, 2266.
34. Li, W. B.; Yu, X. Z.; Yue, Z. T.; Zhang, J. Org. Lett. 2016, 18, 3972.
35. Gurubrahamam, R.; Gao, B. F.; Chen, Y. M.; Chan, Y. T.; Tsai, M. K.; Chen, K. M. Org. Lett. 2016, 18, 3098.
36. Bharathiraja, G.; Sakthivel, S.; Sengoden, M.; Punniyamurthy, T.; Org. Lett. 2013, 15, 4996.
37. Barraja, P.; Spano, V.; Giallombardo, D.; Diana, P.; Montalbano, A.; Carbone, A.; Parrino, B.; Cirrincione, G. Tetrahedron 2013, 69, 6474.

無法下載圖示 本全文未授權公開
QR CODE