Author: |
彭健菱 Chien-Ling Peng |
---|---|
Thesis Title: |
雙親核劑與丙烯基醋酸酯進行有機連鎖反應 Organocascade Reaction of Dinucleophile and Nitroallylic Acetate Catalyzed by Base |
Advisor: |
陳焜銘
Chen, Kwun-Min |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2019 |
Academic Year: | 107 |
Language: | 中文 |
Number of pages: | 123 |
Keywords (in Chinese): | 有機催化合成 、連鎖反應 、MBH反應 、丙烯基醋酸酯 、苯二氮平 |
Keywords (in English): | organocatalysis, cascade reaction, Morita-Baylis-Hillman reaction, nitroallylic acetate, benzodiazepine |
DOI URL: | http://doi.org/10.6345/NTNU201900608 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 140 Downloads: 3 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
苯二氮平衍伸物作為精神疾病的藥物,有許多合成應用的例子。最簡易的方式為使用鄰苯二胺與親電劑在酸性條件下迴流可得,但受限於產率,以及相對嚴苛的反應條件。近年來,使用不同催化劑合成苯二氮平的文獻亦被發表,可在溫和的條件下進行,且大幅提升產率,但大部分的例子中,產物由兩當量相同的試劑組成,故取代基的變化十分有限。本實驗使用建構苯二氮平架構常見的鄰苯二胺作為雙親核劑,與具有良好親電性的丙烯基醋酸酯,在DABCO的催化下,以乙腈為溶劑,40 °C下進行反應。鄰苯二胺與丙烯基醋酸酯先進行第一次加成:SN2’,脫去醋酸鹽後,形成親電中間體,此時DABCO能平衡雙鍵,提升非鏡像選擇性。此時進行第二次加成:分子內Michael反應,形成七員環(7-endo-trig),質子轉移後得到多取代苯二氮平產物。在12個例子中,可得到中等至良好的產率(40-82%),非鏡像異構物比例達到1:10.8。期望未來能有更多合成應用,製備具生理活性價值的分子。
There have been many synthetic examples of benzodiazepine derivatives which could be used to treat mental illness. The simplest method to get these compounds has involved the acid-catalyzed reaction of o-pheneylenediamine with different electrophiles, but it has suffered from disadvantages such as relative low yield and harsh condition. In this work, the reaction was carried out with the use of o-pheneylenediamine and versatile electrophile, nitroallylic acetate, catalyzed by DABCO in acetonitrile at 40 °C. Acetate of nitroallylic acetate left after the first Michael elimination by nucleophilic o-pheneylenediamine. The olefin of intermediate could be transformed by DABCO and this procedure would increase the diastereomeric ratio. The structure of benzodiazepine was constructed via further intramolecular Michael addition with moderate to good yield and great diastereomeric ratios (40-82% yield and up to 1: 10.8 dr). Hope that this synthesis method will contribute to the synthetic application and preparation of biologically active molecules.
1. C. M. Reisinger, S. C. Pan, B. List New Concepts for Catalysis Systems Chemistry, May 26th – 30th, 2008, Bozen, Italy
2. (a) U. Eder, G. Sauer, R. Wiechert, Angew. Chem. Int. Ed. 1971, 83, 492. ; (b) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 496.
3. M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901.
4. E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157.
5. B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395.
6. K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243.
7. G. Bredig, W.S. Fiske, Biochem. Z. 1912, 7.
8. J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjærsgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296.
9. Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212.
10. P. M. Pihko, Angew. Chem. Int. Ed. 2004, 43, 2062.
11. T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672.
12. T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119.
13. C. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167.
14. S. Kaneko, T. Yoshino, T. Katoh, S. Terashima, Tetrahedron 1998, 54, 5471.
15. J. W. Yang, M. T. H. Fonseca, B. List, J. Am. Chem. Soc. 2005, 127, 15036.
16. M. Marigo, T. Schulte, J. Franzén, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 15010.
17. Y. Huang, A. M. Walji, C. H. Larsen, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 15051.
18. D. Enders, M. R. M. Hüttl, C. Grondal1, G. Raabe, Nature, 2006, 441, 861.
19. W. Huang, Y. Chen, K. Chen, Chem. Asian J. 2012, 7, 688.
20. S. Anwar, W. Huang, C. Chen, Y. Cheng, K. Chen, Chem. Eur. J. 2013, 19, 4344.
21. R. J. Reddy, K. Chen, Org. Lett. 2011, 13, 1458.
22. S. Roy, K. Chen, Org. Lett. 2012, 14, 2496.
23. L. F. Yeh, S. Anwar, K. Chen, Tetrahedron 2012, 68, 7317.
24. P. Perlmutter, C. C. Teo, Tetrahedron Lett. 1984, 25, 5951.
25. K. Morita, Z. Suzuki, H. Hirose, Chem. Soc. Jpn. 1968, 41, 2815.
26. A. B. Baylis, M. E. D. Hillman, German Patent 2155113, 1972; Chem. Abstr. 1972, 77, 34174.
27. P. R. Krishna, S. Kishore, P. S. Reddy, Synlett 2009, 2605.
28. N. Abermil, G. Masson, J. Zhu, Org. Lett. 2009, 11, 4648.
29. R. Gurubrahamam, Y. Chen, W. Huang, Y. Chan, H. Chang, M. Tsai, K. Chen, Org. Lett. 2016, 18, 3046.
30. D. Seebach, M. Missbach, G. Calderari, M. Eberle, J. Am. Chem. Soc. 1990, 112, 7625.
31. C. Cao, Y. Zhou, J. Zhou, X. Sun, Y. Tang, Y. Li, G. Li, J. Sun, Chem. Eur. J. 2009, 15, 11384.
32. R. J. Reddy, K. Chen, Org. Lett. 2011, 13, 1458.
33. D. K. Nair, S. M. Mobin, I. N. N. Namboothiri, Tetrahedron Lett. 2012, 53, 3349.
34. W. Huang, Y. Chen, K. Chen, Chem. Asian J. 2012, 7, 688.
35. T. Chen, N. Shao, H. Zhu, B. Zhang, H. Zou, Tetrahedron 2013, 69, 10558.
36. D. R. Magar, Y. Ke, K. Chen, Asian J. Org. Chem. 2013, 2, 330.
37. H. Zhu, N. Shao, T. Chen, H. Zou, Chem. Commun. 2013, 49, 7738.
38. J. Y. Wick, Consult. Pharm. 2013, 28, 538.
39. J. K. Landquist, In Comprehensive Heterocyclic Chemistry; Pergamon: Oxford, 1984.
40. N. Kakyanam, S. G. Manyunatha, Heterocycles 1991, 32, 1131.
41. J. A. L. Herbert, H. Suschitzky, J. Chem. Soc., Perkin Trans. 1, 1974, 2657.
42. W. Chen, J. Lu, Synlett 2005, 8, 1337.
43. R. Varala, R. Enugala, S. Nuvula, S. R. Adapa, Synlett 2006, 7, 1009.
44. C. Kuo, S. V. More, C. Yao, Tetrahedron Lett. 2006, 47, 8523.
45. I. Deb, M. Dadwal, S. M. Mobin, I. N. N. Namboothiri, Org. Lett. 2006, 8, 1201.
46. I. Deb, P. Shanbhag, S. M. Mobin, I. N. N. Namboothiri, Eur. J. Org. Chem. 2009, 4091.
47. H. Kuan, R. J. Reddy, K. Chen, Tetrahedron, 2010, 66, 9875.
48. R. J. Reddy, K. Chen, Org. Lett. 2011, 13, 1458.
49. R. J. Reddy, P. Lee, D. R. Magar, J. Chen, K. Chen, Eur. J. Org. Chem. 2012, 353.
50. L. Munoz, M. E. Kavanagh, A. F. Phoa, B. Heng, N. Dzamko, E. Chen, M. R. Doddareddy, G. J. Guillemin, M. Kassiou, Eur. J. Med. Chem. 2015, 95, 29.
51. J. R. Hwu, C. C. Lin, S. H. Chuang, K. Y. King, T. Suc, S. Tsay, Bioorg. Med. Chem. 2004, 12, 2509.
52. S. W. Englander, L. Mayne, Y. Bai, T. R. Sosnick, Protein Sci. 1997, 6, 1101.
53. H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.
54. M. Karplus, J. Chem. Phys. 1959, 30, 11.
55. J. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 734.