研究生: |
陳盈言 |
---|---|
論文名稱: |
國二學生變數概念的成熟度對其函數概念發展的影響 |
指導教授: | 曹博盛 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | 國二學生 、變數概念 、函數概念 |
論文種類: | 學術論文 |
相關次數: | 點閱:176 下載:50 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是瞭解函數單元教學前國二學生變數概念的成熟度與教學後其函數概念的發展情形,進而探討學生變數概念的成熟度對其函數概念發展的影響。研究方法採量與質並行,對三個台北市國中之六個班級共163位學生進行全面的紙筆測驗與選樣的訪談,以瞭解學生的解題思維與錯誤來源,並將所得的資料進行統計與分析。
本研究主要的結果為:(一)在變數概念的理解上,約有32﹪的學生尚未開始文字符號的真正使用,20﹪的學生將文字符號當作特定的未知數,33﹪者將文字符號當作一般數,15﹪者能察覺文字符號之元素間的高階關係。(二)在函數概念的理解上,約有16.6﹪的學生未能處理代入求值的相關問題,31.3﹪的學生已能代入求值,但未能以符號表示兩變數間、函數與變數間的關係,或無法畫出正確的函數圖形;約有33.7﹪的學生僅有函數的操作性知識,未有概念性知識;18.4﹪的學生已有函數的概念性知識,能在不同表徵上區分出函數的正例與非例。(三)變數概念的成熟度對其函數概念發展是有影響的,但並非變數概念完全成熟後函數概念才會開始發展,除非是對變數概念完全不瞭解者,函數概念才可能完全空白,而且變數概念層次越高者,其函數概念發展的層次也較高,變數概念層次越低者,其函數概念發展的層次也較低。
一、中文部份
Booth, L. R.演講,王秀密整理(民76)。代數的診斷教學。科學教育月刊,第100期,頁33-41。
Booth, L. R.演講,張素鎔整理(民76)。初等代數的學習困難。科學教育月刊,第100期,頁23-29。
Fisher, K. M. & Lipson, J. I.原著,郭丁熒譯(民81)。追根究底談錯誤-有關學生錯誤的二十個問題。國教之友,第44卷,第2期,頁17-23。
Skemp, R. R.(1987)。數學學習心理學(陳澤民譯,1995)。台北:九章出版社。
李虎雄等(民81)。高級中學數學課程改進研究八十學年度研究報告。台北:
國立台灣師範大學科學教育中心編印。
谷超豪主編(民84)。數學詞典。台北:建宏出版社。
沈璿、李洪江和夏文侯(民49)。新世紀教科書高中數學上冊。台北:世界書局。
林碧珍(民74)。數學概念的形成與學習。國教世紀月刊,第21卷,第1、2期,頁1-4。
美國中學數學研究會編(民54)。初等函數。台北:教育部中等教育司譯印。
范傳坡(民55)。新教材高中數學第二冊。台北:復興書局。
范傳坡等(民65)。新標準高中數學第一冊修訂本。台北:數理出版公司。
孫文先、陳碧真編(民71)。簡明數學百科全書。台北:九章出版社。
張春興(民78)。張氏心理學辭典。台北:東華書局。
張鳳燕(民80)。教導心理學微觀—從概念學習談國小數學教育。師友月刊,第284期,頁24-29。
郭汾派、林光賢和林福來(民78)。國中生文字符號概念的發展。國科會專題研究計畫報告。NSC 76-0111-S003-08;NSC 77-0111-S003-05A。
國立編譯館主編(民88)。國民中學數學第3冊。台北:國立編譯館。
戴久永(民76)。現代數學入門(中)。新竹:凡異出版社。
謝豐瑞、陳材河(民86)。函數的一生。科學教育月刊,第199期,頁34-43。
二、英文部份
Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford & A. P. Shulte (Eds.), The ideas of algebra (pp. 20-32). Reston, VA: National Council of Teachers of Mathematics.
Clement, J. (1982). Algebra word problem solutions: Thought processes underlying a common misconception. Journal for research in Mathematics Education, 13(1), 16-30.
Cooney, T. J., & Wilson, M. R. (1993). Teachers’ thinking about functions: historical and research perspectives. In T. A. Romberg, E. Fennema, & T. P. Carpenter (Eds.), Integrating Research on the Graphical Representation of Functions (pp. 131-158). Hillsdale, NJ: Lawrence Erlbaum.
Costello, J. (1991). Teaching and Learning Mathematics 11-16. London: Routledge.
Dreyfus, T. (1990). Advanced mathematical thinking. In P. Nesher, & J. Kilpatrick (Eds.), Mathematics and Cognition: A research Synthesis by the International Group for the Psychology of Mathematics Education (pp. 113-134). Cambridge, England: Cambridge University Press.
Dreyfus, T., & Eisenberg, T. (1982). Intuitive functional concepts: A baseline study on intuitions. Journal for Research in Mathematics Education, 13(5), 360-380.
Eisenberg, T. (1992). On the development of a sense for functions. In G. Harel, & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (MAA Notes, Vol. 25, pp. 153-174). Washington, DC: Mathematical Association of America.
Even, R. (1990). Subject matter knowledge for teaching and the case of function. Educational Studies in Mathematics, 21, 521-544.
Fouch, R. S., & Nichols, E. D. (1959). Language and symbolism in mathematics. In The National Council of Teachers of Mathematics (Ed.), The growth of mathematical ideas grades K-12 (pp. 357-369). Washington, DC: National Council of Teachers of Mathematics.
Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht, The Netherlands: D. Reidel.
Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher , & J. Kilpatrick (Eds.), Mathematics and Cognition: A research Synthesis by the International Group for the Psychology of Mathematics Education (pp. 70-95). Cambridge, England: Cambridge University Press.
Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner, & C. Kieran (Eds.), Research Issues in the Learning and Teaching of Algebra (Vol. 4, pp. 167-194). Reston, VA: National Council of Teachers of Mathematics.
Kieran, C. (1993). Functions, graphing, and technology: integrating research on learning and instruction. In T.A. Romberg, E. Fennema & T.P. Carpenter (Eds.), Integrating Research on the Graphical Representation of Functions (pp. 189-237). Hillsdale, NJ: Lawrence Erlbaum.
Kieran, C. (1992). The learning and teaching of school algebra. In D.A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 391-419). New York: Macmillan.
Kleiner, I. (1989). Evolution of the function concept: A brief survey. College Mathematics Journal, 20(4), 282-300.
Kuchemann, D. (1981). Algebra. In K. M. Hart, M. L. Brown, D. E. Kuchemann, D. Keslake, G. Ruddock, & M. McCartney. (Eds.), Children’s understanding of mathematics: 11-16 (pp. 102-119). London: John Murray.
Kuchemann, D. (1978). Children’s understanding of numberical variables. Mathematics in school, 7(4), 23-26.
Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, Graphs, and Graphing: Tasks, Learning, and Teaching. Review of Educational Research, 60(1), 1-64.
Leitzel, J. R. (1989). Critical Considerations for the Future of Algebra Instruction. In S. Wagner, & C. Kieran (Eds.), Research Issues in the Learning and Teaching of Algebra (pp. 25-32). Reston, VA: National Council of Teachers of Mathematics/Hillsdale, NJ: Lawrence Erlbaum.
Lovell, K. (1971). Some aspects of the growth of the concept of function. In M. F. Rosskopf, L. P. Steffe, & S. Taback (Eds.), Piagian cognitive-development research and mathematical education (pp. 12-33). Washington, DC: National Council of Teachers of Mathematics.
Malik, M. A. (1980). Historical and pedagogical aspects of the definition of function. International Journal of Mathematical Education in Science and Technology, 11(4), 489-492.
Markovits, Z., Eylon, B., & Bruckheimer, M. (1986). Functions today and yesterday. For the Learning of Mathematics, 6(2), 18-28.
NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
Norman, F. A. (1993). Integrating research on teachers’ knowledge of functions and their graphs. In T. A. Romberg, E. Fennema, & T. P. Carpenter (Eds.), Integrating Research on the Graphical Representation of Functions (pp. 159-187). Hillsdale, NJ: Lawrence Erlbaum.
Norman, F. A. (1986). Student’s unitizing of variable complexes in algebraic and graphical contexts. In G. Lappan & R. Even (Eds.), Proceedings of the eighth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 102-107). East Lansing, MI: Michigan State University.
Philipp, R. A. (1992). The many uses of algebraic variables. Mathematics Teacher, 85(7), 557-561.
Schoenfeld, A. H., & Arcavi, A. (1988). On the meaning of variable. Mathematics Teacher, 81, 420-427.
Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-the case of function. In G. Harel, & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (MAA Notes, Vol. 25, pp. 59-84). Washington, DC: Mathematical Association of America.
Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
Sfard, A. (1987). Two conceptions of mathematical notions: operational and structural . In J. C. Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the Eleventh International Conference for the Psychology of Mathematics Education, (Vol. 3, pp. 162-169). Montreal, Canada: PME.
Thomas, H. L. (1971). The concept of function. Paper presented at the Annual Meeting of the American Educational Research Association, New York.
Usiskin, Z. (1988). Conceptions of School Algebra and Uses of Variables. In A. F. Coxford, & A. P. Shulte (Eds.), The ideas of algebra (pp. 8-19). Reston, VA: National Council of Teachers of Mathematics.
Vinner, S. (1992). The function concept as a prototype for problems in mathematics learning. In G. Harel, & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (MAA Notes, Vol. 25, pp. 195-213). Washington, DC: Mathematical Association of America.
Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematics Education in Science and Technology, 14, 293-305.
Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356-366.
Wagner, S. (1983). What are these things called variables? Mathematics Teacher, 76, 474-479.
Wagner, S. (1981). An analytical framework for mathematical variables. In C. Comiti (Ed.), Proceedings of the fifth international conference of the International Group of Psychology of Mathematics Education, (vol. 2, pp. 165-170). Grenoble, France: PME.
Wagner, S. (1977). Conservation of equation and function and its relationship to formal operational thought. Paper presented at the annual meeting of the American Educational Research Association, New York City.
Wilson, P. S. (1990). Inconsistent ideas related to definitions and examples. Focus on Learning Problems in Mathematics, 12(3-4), 31-47.
Yen, C. L. & Law, C. K. (1993). Cognitive development of the concepts of linear function and quadratic function for junior high school students. Proceedings of the National Science Council Part D: Mathematics, Science, and Technology Education, 3(2), 43-54.