簡易檢索 / 詳目顯示

研究生: 簡維良
Wei-Liang Chien
論文名稱: On the distribution of the leading statistics for the bounded deviated permutations
On the distribution of the leading statistics for the bounded deviated permutations
指導教授: 林延輯
Lin, Yen-Chi
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 18
中文關鍵詞: 有界偏差排列第一位置統計量常態分佈雙變數生成函數quasi-powers 定理Hayman's 公式
英文關鍵詞: bounded deviated permutation, leading statistic, normal distribution, bivariate generating function, quasi-powers theorem, Hayman’s method
論文種類: 學術論文
相關次數: 點閱:154下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的研究目的是要在均勻分佈的假設下,探索bounded deviated permutations的第一位置統計量的分佈情形,而我們猜測其將為常態分佈。
    定義好與第一位置統計量相關的隨機變數後,藉由考慮雙變數生成函數,我們可以計算此隨機變數的平均數和變異數,本篇論文將把這個方法應用在三個特殊的情形上。因為這個雙變數生成函數的係數並沒有closed form,在計算過程中,我們會使用Hayman's formula求其漸進式。最後,使用電腦計算,這三個特殊的情形確實收斂到常態分佈,證實了我們的猜測。

    The purpose of the thesis is to investigate the distribution of the leading statistic in the bounded deviated permutations S_{n+1}^{ℓ,r}, assuming the uniform distribution in S_{n+1}^{ℓ,r}.
    Define the random variable X_{n} to take the value k if π₁=k+1 for π=π₁π₂⋯π_{n+1}∈S_{n+1}^{ℓ,r}. By considering the bivariate generating function A(z,u), we could calculate the expected value and the standard deviation for X_{n}. The method is then applied to three specific cases, S_{n+1}^{1,2}, S_{n+1}^{1,3} and S_{n+1}^{2,2}. Since the coefficients λ_{n,k} of the bivariate generating function do not have a closed form, we will apply the Hayman method to get its asymptotic formula. Finally, by running computer programs, the convergence of the normal distribution on these three cases are verified.

    1.Introduction 1 2.Bounded deviated permutations 2 3.Random variable 4 4.Convergence to normal distributions 5 5.Main results 5.1 Case 1: (ℓ,r)=(1,2) 6 5.2 Case 2: (ℓ,r)=(1,3) 10 5.3 Case 3: (ℓ,r)=(2,2) 14 6.Conclusion and Further discussion 18 References 18

    1: M. Aigner, A Course in Enumeration, Springer-Verlag Berlin Heidelberg 2007
    2 : Sen-Peng Eu, Yen-Chi R. Lin, Yuan-Hsun Lo, Bounded deviated permutations, preprint
    3 : Philippe Flajolet, Robert Sedgewick, Analytic Combinatorics, Cambridge University Press 2009
    4 : Hayman, Walter, A generalisation of Stirling's formula, Journal für die reine und angewandte Mathematik 196 (1956), 67-95
    5 : Herbert S. Wilf, Generatingfunctionology, 2nd edition, 1994

    下載圖示
    QR CODE